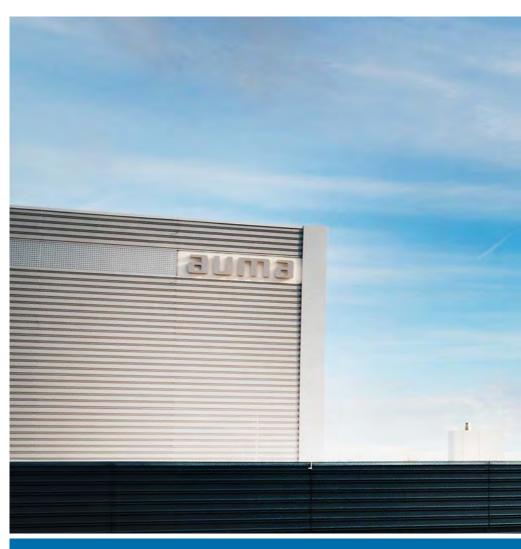


ЭЛЕКТРОПРИВОДЫ для автоматизации арматуры в нефтяной и газовой промышленности



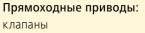
ВВЕДЕНИЕ


В брошюре представлены функциональные и эксплуатационные возможности электроприводов, блоков управления и редукторов. Приводится обзор продукции, а также подробное описание конструкции и принципа работы электроприводов производства компании AUMA.

Технические характеристики устройств содержатся в соответствующей главе на последних страницах брошюры. Более подробная информация находится в отдельных таблицах с данными. По всем вопросам обращайтесь к сотрудникам компании AUMA.


Самая свежая информация о продукции AUMA всегда размещается в интернете на сайте www.auma.com. Там собрана вся документация в цифровом формате: таблицы размеров, электрические схемы, технические и электрические характеристики, а также акты приемо-сдаточных испытаний поставляемых приводов.

О компании	
Введение AUMA - эксперт по электроприводам	2 4
Общие положения	
Область применения	6
Международные сертификаты	8
Краткое описание электроприводов	10
Многооборотные приводы SAEx и неполнооборотные приводы SQEx Системы автоматизации для любых типов арматуры	12 14
Условия эксплуатации	16
Основные функции приводов	20
Принципы управления	22
Управление и эксплуатация	
Внедрение в РСУ - Блоки управления АМЕхС и АСЕхС	24
Удобное управление	26
Надежность, длительный срок службы, сервис AUMA CDT для ACExC - быстрый ввод в эксплуатацию	28 30
AUMA CDT для ACExc - оветрый ввод в эксплуатацию AUMA CDT для ACExc - интерфейс диагностики	32
Связь	32
Связь - нестандартные интерфейсы	34
Связь по полевой шине	36
Протокол связи - HART	40
SIMA - системная станция полевой шины	42
Беспроводное и оптоволоконное соединение	44
Конструкция	1.0
Унифицированные принципы конструкции SAEx и SQEx Электромеханический блок выключателей	46 52
Электромеханический олок выключателей Электронный блок выключателей	53
Интерфейсы	
Присоединение к арматуре	54
Электрическое подключение	56
Специальные решения	
Комбинации приводов и редукторов для больших крутящих моментов	58
Особые условия - Адаптация к любому монтажному положению	60
Специальное назначение и функции	64
Безопасность	70
Защита арматуры во время работы Функциональная безопасность — SIL	70 72
Сертификаты - международные допуски к эксплуатации	74
Технические характеристики	
Многооборотные приводы SAEx и неполнооборотные приводы SQEx	76
Блоки управления АМЕхС и АСЕхС	82
Неполнооборотные приводы SAEx/GS	85
Многооборотные приводы SAEx/GK	89
Многооборотные приводы SAEx/GST Многооборотные приводы SAEx/GHT	90 91
Многооооротные приводы ЗАЕх/GR Неполнооборотные приводы SQEx со станиной/рычагом и SAEx/GF	92
Прямоходные приводы SAEx/LE	93
Сертификаты	94
Алфавитный указатель	96



АИМА - ЭКСПЕРТ ПО ЭЛЕКТРОПРИВОДАМ

Компания **AUMA** («**A**rmaturen- **U**nd **M**aschinen**A**ntriebe», нем. «приводы для арматуры и машинные приводы») является ведущим производителем электроприводов для автоматизации промышленной арматуры. С момента основания в 1964 году компания занимается разработкой, производством, продажей электроприводов, а также предоставлением сервисного обслуживания.

Бренд AUMA - это синоним многолетнего опыта и мировой известности в области производства электроприводов для энергетики, водоснабжения, нефтегазовой промышленности.

Компания, как независимый партнер международной отрасли арматуростроения, поставляет специализированную продукцию для электрической автоматизации любой промышленной арматуры.

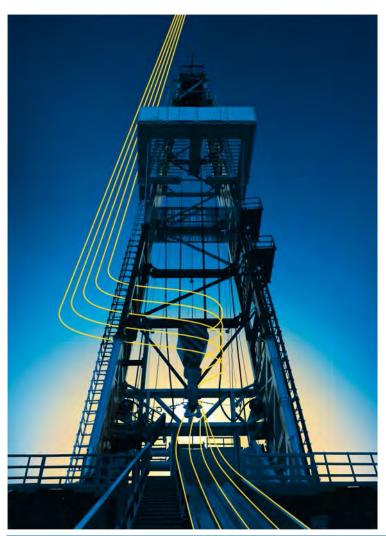
AUMA и нефтегазовая промышленность

Нефть и газ являются важнейшими источниками энергии и сырьевым материалом для промышленности. Добыча, очистка и распределение нефти и газа производятся с использованием самых современных технологий. Вследствие высокой опасности для людей и окружающей среды в нефтегазовой промышленности действуют строгие нормативы. Уже более 40 лет компания АUMA производит взрывозащищенные электроприводы, признанные специалистами отрасли во всем мире. Данные электроприводы отвечают постоянно возрастающим требованиям рынка и имеют соответствующие сертификаты.

Модульная конструкция

Изделия AUMA изготавливаются по модульному принципу. Специализированные электроприводы для каждой задачи собираются из широкого ассортимента компонентов и блоков. Универсальные интерфейсы между узлами обеспечивают большое количество возможностей подключения при сохранении высокого качества продукции и удобства техобслуживания.

Инновации как повседневность


Компания AUMA, эксперт по электроприводам, устанавливает стандарты в области инноваций и характеристик надежности. Высокий уровень технологичности собственного производства позволяет непрерывно внедрять новые решения как на уровне отдельных узлов, так и на уровне установок. Это относится к устройствам любой функциональности: механическим и электромеханическим узлам, электронике и программному обеспечению.

Успех отражается в росте продаж по всему миру

С момента своего основания в 1964 году компания AUMA выросла в международное предприятие, со штатом в 2 300 сотрудников. К услугам клиентов глобальная сеть из 70 представительств, занимающихся продажами и сервисным обслуживанием. По мнению наших заказчиков, сотрудники компании AUMA являются компетентными специалистами по консультированию и постпродажному обслуживанию.

Сотрудничество с компанией AUMA:

- > обеспечивает автоматизацию арматуры в соответствии с нормативами
- > обеспечивает безопасность проектирования и подключения установок благодаря сертифицированным интерфейсам
- > гарантирует техобслуживание на месте, включая поддержку при вводе в эксплуатацию и обучение персонала

ОБЛАСТЬ ПРИМЕНЕНИЯ

БУРЕНИЕ И ДОБЫЧА

- > Подводящие и отводящие трубопроводы
- > Сепарация
- > Промежуточное хранение
- > Газлифтные способы добычи

Перекачка нефти и газа сопряжена с технически трудоемкими операциями часто в сложных условиях. Электроприводы играют решающую роль при управлении и регулировании потоков газа и жидкости. К оборудованию предъявляются высокие требования в области охраны труда и защиты окружающей среды. Сложные климатические условия, например, на буровых платформах, определяют условия эксплуатации, в которых приводы AUMA показывают свою надежность и безотказную работу. Для работы в прибрежной зоне оборудование AUMA покрывается специальной защитой от коррозии.

ТРАНСПОРТИРОВКА

- > Трубопроводы
- > Насосные станции
- > Компрессорные станции
- > Танкеры

Электроприводы играют ключевую роль в регулировании потоков нефти и газа в трубопроводах, на танкерах и разветвленных сетях, а также в процедуре заправки топливом. Оборудование работает в самых разных условиях. Трубопроводы часто прокладываются через длинные незаселенные участки в различных климатических зонах, в основном, прибрежных условиях эксплуатации. Приводы AUMA день за днем доказывают свою надежность во всех этих условиях: как при -60° в Сибири на компрессорных станциях, так и при +50 °C на топливозаправочных установках в Индийском океане.

ОБРАБОТКА

- > Сепарация
- > Нефтеперегонные станции
- > Гидрокрекинг
- > Замедленное коксование

В трубопроводах нефтеперерабатывающих заводов обычно наблюдается высокое давление и/или температуры среды. Здесь применяется большое количество дорогостоящей арматуры, часть из которой управляется автоматизированно. К ней также относится подъемно-клапанная арматура и арматура коксования. На страницах 65 и 66 приводится краткое описание специального применения оборудования AUMA. Благодаря высокой степени функциональной безопасности (SIL) приводы AUMA подходят для установки в системах безопасности. Приводы в огнеупорном исполнении сохраняют работоспособность в условиях пожара в течение более 30 минут.

ХРАНЕНИЕ

- > Противопожарные и грузовые платформы
- > Нефтехранилища
- > Газохранилища
- > Насосные станции

Хранение не является статичным. Газ, сырую нефть и полученные из них продукты необходимо хранить, транспортировать, временно складировать и перевозить из одного места хранения в другое. При этом необходимо эффективно и безопасно использовать имеющиеся мощности, резервуары, трубопроводы и грузовые устройства. Для того чтобы это обеспечить, требуются соответствующие средства управления и электроприводы, которые встраиваются в распределенную систему управления. Электроприводы AUMA соответствуют не только высоким стандартам безопасности, но и включают в себя необходимые интерфейсы для подключения к таким системам. Сюда же относятся, например, дублирующие цепи, повышающие надежность передачи данных и позволяющие покрывать большие расстояния между полевыми устройствами на открытых участках. Приводы AUMA совместимы с системами скоростной передачи данных, поэтому их можно применять в высокоэффективной архитектуре с постоянно чередующимися процессами.

МЕЖДУНАРОДНЫЕ СЕРТИФИКАТЫ

Во избежание несчастных случаев и аварий при обработке взрывоопасных и огнеопасных материалов необходимо соблюдать повышенные нормы техники безопасности. Наверное нет другой отрасли, в которой к оборудованию предъявлялись бы более высокие требования, чем в нефтегазовой промышленности. Уже сам факт того, что компания AUMA является основным поставщиком оборудования для крупных предприятий нефтегазовой отрасли, говорит о высокой степени надежности ее оборудования.

Национальные и международные сертификаты

Нефтегазовая промышленность является глобальной отраслью. Перед подключением к взрывозащищенной системе устройство должно пройти соответствующий процесс сертификации на предмет соответствия местным нормативам.

Все типы электроприводов AUMA, предназначенных для эксплуатации в потенциально взрывоопасных средах, проходят проверку в компетентных испытательных лабораториях.

Во всех странах, где применяются взрывозащищенные приводы AUMA, действуют местные нормативы, что обеспечивает безопасность при проектировании систем.

Электроприводы и редукторы AUMA соответствуют стандартам ISO 9001 и МЭК 80079-34, обеспечивая необходимый для нефтегазовой промышленности уровень безопасности.

Оборудование AUMA соответствует следующим нормативам и стандартам:

- > Международный IECEx
- > EC ATEX
- > США FM
- > Россия РОСТЕХНАДЗОР/Таможенный союз
- > Китай NEPSI
- > Белоруссия Госпромнадзор/Таможенный союз
- > Бразилия INMETRO
- > Индия С.Е.Е.
- > Казахстан Таможенный союз
- > Канада CSA
- > MAP SABS
- > Южная Корея KOSHA
- > Япония TIIS
- > и др.

Благодарственные письма заказчиков

Сертификаты, выданные уведомленными органами, в основном, затрагивают характеристики устройств и нормы производства, в то время как заказчики проверяют оборудование на долговечность и надежность.

Ниже приводится список предприятий, которые подтвердили соответствие оборудования AUMA своим требованиям.

Абу-Даби

- > ADCO
- > ADGAS
- > ADNOC
- > TAKREER

Алжир

> Sonatrach

Аргентина

> REPSOL YPF

Бахрейн

> BANAGAS

Бельгия

> EXXON MOBIL

Бразилия

> PETROBRAS

Великобритания

- > BP
- > DOW
- > EXXON-MOBIL

Венесуэла

> PDVSA

Германия

- > BEB
- > RUHRGAS

Египет

> PPC

Индия

- > EIL
- > HPCL
- > IOCL
- > ONGC/CIDC

Индонезия

> Pertamina

Ирак

> MOC

> SOC Испания

> ENAGAS

Италия

> ENI

> ERG PETROLINE

Катар

- > Qatar Petroleum
- > QGC
- > QGPC

Китай

- > CNOOC
- > Petro China
- > Sinopec

Колумбия

> ECOPETROL

Кувейт

- > KNPC

> KOC

Малайзия

> Petronas

Мексика

> PEMEX

Нигерия > NNPC

- Нидерланды > ARAMCO
- > SABIC
- > Shell

Норвегия

> ConocoPhillips

> STATOIL

Оман

- > ORC
- > PDO

Перу

> Petroperú

Португалия

> GALP

Россия

- > GAZPROM
- > LUKOIL

Саудовская

Аравия > SAUDI ARAMCO

США

- > AMEC Paragon
- > Chemco
- > Chevron Texaco
- > DUPONT

Таиланд

> PTT Public Company Ltd.

Турция

- > OPET
- > Turkish Pertoleum
- > Turkpetrol

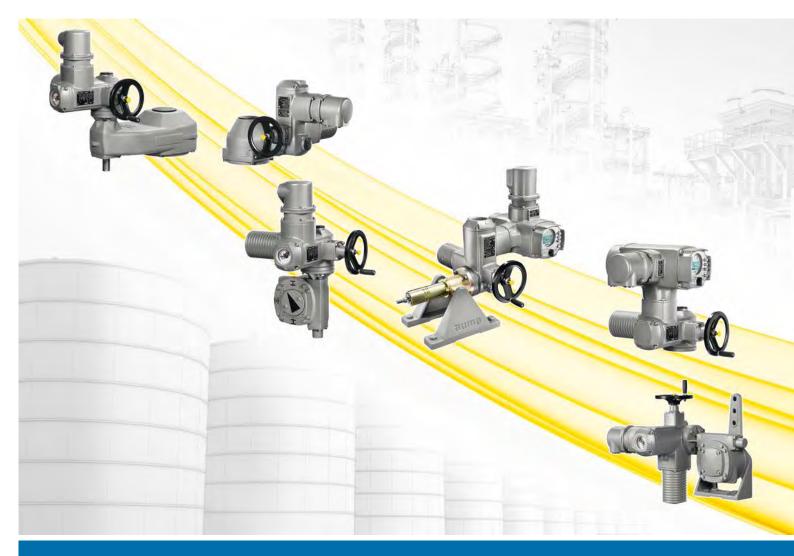
Уругвай

> ANCAP

Франция

> TOTAL

Чили


> ENAP

Шри Ланка

- > CPC
- Эквадор
- > PETROECUADOR

ЮАР

> PetroSA

КРАТКОЕ ОПИСАНИЕ ЭЛЕКТРОПРИВОДОВ

В рамках технологического процесса по трубопроводам транспортируются различные жидкости, газы, пары и взвеси. Промышленная арматура регулирует расход среды, а также контролирует скорость потока путем открытия или закрытия арматуры. Электроприводы AUMA могут управлять арматурой дистанционно, из диспетчерской.

Автоматизация промышленной арматуры

Современное производство широко использует системы автоматизации, необходимые для управления сложными процессами.

Положение арматуры определяет привод, который получает соответствующие команды от распределенной системы управления (РСУ). При достижении конечного или промежуточного положения привод отключается, а сигнал состояния подается в РСУ.

Электроприводы

Электроприводы оснащаются специальными блоками автоматизации, состоящими из электродвигателей и редукторов, которые создают необходимый крутящий момент для управления задвижками, заслонками, кранами и клапанами. Кроме того, арматура может управляться вручную с помощью маховика. Привод регистрирует данные хода и момента арматуры. Эти данные обрабатываются блоком управления, который, таким образом, контролирует порядок включения и отключения электродвигателя привода. Блок управления и привод, как правило, образуют один узел, на котором имеется интерфейс электрического соединения с РСУ и панель местного управления.

С 2009 года требования к электроприводам регламентируются международным стандартом EN 15714-2.

Требования и нормативы

Производственные установки с трубопроводами и системами автоматизации востребованы во всем мире. По этой причине, помимо типов арматуры, к электроприводам предъявляются требования, связанные с климатическими условиями эксплуатации. Электроприводы AUMA надежно и безопасно работают в самых экстремальных условиях окружающей среды.

Международные сертификационные организации подтверждают качество приводов AUMA, которые проектируются, производятся и тестируются в соответствии с требованиями заказчика. Выдаются соответствующие сертификаты.

Компания AUMA, являясь независимым производителем, тесно сотрудничает с изготовителями арматуры, проектировщиками и конечными потребителями в нефтегазовой промышленности.

Надежность и долговечность

Оборудование работает эффективно и безопасно только в том случае, если все узлы и элементы обеспечивают надежную работу на протяжении всего срока службы. Многие установки рассчитаны на работу в течение нескольких десятилетий, поэтому для них необходимо предусмотреть соответствующие электроприводы. Компания AUMA может в течение длительного периода поставлять запасные части для уже устаревших типоразмеров и линеек.

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX И НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SQEX

Арматура различается по принципу управления

Задвижки являются типичным примером многооборотной арматуры. Для того чтобы обеспечить ход от положения ЗАКРЫТО до положения ОТКРЫТО и обратно, на входе такой арматуры требуется создать определенное число оборотов. Дисковые затворы и шаровые краны используются при неполном обороте до 90°.

Проходная арматура, как правило, управляется прямоходным движением. Существует также арматура с рычажным управлением. В этом случае требуется рычажное усилие.

Для каждого типа движения требуются определенные электроприводы.

В основу ассортимента компании AUMA входят многооборотные приводы серии SAEx и неполнооборотные приводы серии SQEx.

Электроприводы AUMA

Базовые режимы работы едины для всех приводов AUMA.

Электродвигатель приводит в движение редуктор. Крутящий момент на выходе редуктора передается на арматуру через стандартизованный механический интерфейс. Блок выключателей электропривода записывает положение хода и контролирует выходной крутящий момент. Блок выключателей подает на электродвигатель сигнал о достижении арматурой конечного положения или установленного значения крутящего момента. Как только электродвигатель получает данный сигнал, его средства управления останавливают привод. Обмен командами управления и сигналами обратной связи между средствами управления электродвигателя и РСУ осуществляется через соответствующий электрический интерфейс.

Многооборотные приводы SAEx и неполнооборотные приводы SQEx

Обе серии базируются на общих конструктивных принципах. Ввод в эксплуатацию и управление почти не отличаются.

Многоборотные приводы SAEx

Согласно EN ISO 5210, многооборотный привод способен выдерживать усилие на арматуре и передавать на нее крутящий момент для как минимум одного оборота. В большинстве случаев для многооборотной арматуры требуется значительно больше одного оборота, поэтому задвижки часто оснащаются выдвижным штоком. Для управления такой арматурой приводу необходимо совершить несколько оборотов. По этой причине многооборотные приводы SAEx оснащены пустотелым валом, через который проходит шток задвижки.

Неполнооборотные приводы SQEx

Согласно EN ISO 5211, привод является неполнооборотным, если для полного хода арматуры на ее входе требуется создавать менее одного полного оборота. Такие приводы не способны выдерживать осевую нагрузку.

Неполнооборотная арматура, например, дисковые затворы и шаровые краны, часто изготавливается без концевых упоров. Неполнооборотные приводы SQEх оснащены встроенными концевыми упорами для обеспечения точного достижения конечных положений в ручном режиме управления.

Многооборотные приводы SAEx с редуктором

Встроенные редукторы расширяют сферу применения многооборотных приводов SAEx.

- > Конструкция с прямоходным модулем LE образует прямоходный привод
- > Конструкция с рычажным редуктором GF образует рычажный привод
- > Конструкция с неполнооборотным редуктором GS образует неполнооборотный привод, в основном, для повышенного крутящего момента
- > Конструкция с многооборотным редуктором GST или GK образует многообротный привод с повышенным выходным крутящим моментом. Такие модульные конструкции позволяют автоматизировать нестандартную арматуру.

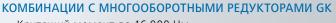
СИСТЕМЫ АВТОМАТИЗАЦИИ ДЛЯ ЛЮБЫХ ТИПОВ АРМАТУРЫ

БЛОК УПРАВЛЕНИЯ ЭЛЕКТРОПРИВОДОВ АСЕХС 01.2

- > C микропроцессорным управлением и расширенным функционалом
- > Связь по полевой шине
- > Дисплей
- > Диагностика
- > и др.

БЛОК УПРАВЛЕНИЯ ПРИВОДОМ АМЕХС 01.1

> Простое управление со стандартными функциональными возможностями


МНООБОРОТНЫЕ ПРИВОДЫ SAEX 07.2 – SAEX 16.2 И SAEX 25.1 – SAEX 40.1

- > Крутящий момент: 10 16 000 Hm
- > Автоматизация задвижек и проходной арматуры

- > Крутящий момент до 16 000 Нм
- > Автоматизация задвижек со сдвоенным штоком
- > Оборудование для особых монтажных положений

КОМБИНАЦИИ С МНОГООБОРОТНЫМИ РЕДУКТОРАМИ GST

- > Крутящий момент до 16 000 Нм
- > Автоматизация задвижек
- > Решения для особых монтажных положений

КОМБИНАЦИИ С МНОГООБОРОТНЫМИ РЕДУКТОРАМИ GHT

- > Крутящий момент до 120 000 Нм
- > Автоматизация задвижек с повышенным крутящим моментом

КОМБИНАЦИИ С ПРЯМОХОДНЫМ МОДУЛЕМ LE

- > Усилие: 4 кН 217 кН
- > Автоматизация поворотной арматуры

КОМБИНАЦИИ С НЕПОЛНООБОРОТНЫМИ РЕДУКТОРАМИ GS

- > Крутящий момент до 675 000 Нм
- > Автоматизация дисковых затворов , шаровых и конусных кранов

КОМБИНАЦИИ С РЫЧАЖНЫМИ РЕДУКТОРАМИ GF

- > Крутящий момент до 45 000 Нм
- > Автоматизация дисковых затворов с рычажным управлением

НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SQEX 05.2 – SQEX 14.2

- > Крутящий момент: 50 2 400 Нм
- > Автоматизация дисковых затворов и конусных кранов

НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SQEX 05.2 – SQEX 14.2 CO СТАНИНОЙ И РЫЧАГОМ

- > Крутящий момент: 50 2 400 Нм
- > Автоматизация дисковых затворов с рычажным управлением

Оборудование AUMA эксплуатируется во всем мире, обеспечивая надежную и долговечную работу в любых условиях.

СТЕПЕНЬ ЗАЩИТЫ

Электроприводы SAEx и SQEx поставляются с повышенной степенью защиты оболочки IP68 в соответствии с EN 60529. Степень защиты IP 68 предусматривает нахождение привода под водой на глубине до 8 метров в течение 96 часов. Во время погружения в воду допускается до 10 срабатываний.

Редукторы AUMA, как правило, используются в комбинации с многооборотными приводами. Редукторы также могут соответствовать степени защиты IP68.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Взрывозащищенные устройства сконструированы так, чтобы они не могли стать источником воспламенения во взрывоопасной атмосфере. Они не производят искр воспламенения, а поверхности корпуса не нагреваются до высоких температур.

Классификации и диапазоны температур по данным испытательных лабораторий других стран смотрите на странице 74.

Классификация взрывозащиты по стандартам России и по международному стандарту МЭК (выборочно)

Диапазон окружающей температуры		
миним.	макс.	Взрывозащита
−60 °C	+60 °C	1ExdellCT4/T3; 1ExdllCT4/T3
−60 °C	+60 °C	1ExdellCT4/T3; 1ExdllCT4/T3
−60 °C	+60 °C	1ExedIIBT4/T3
−60 °C	+60 °C	1ExdellCT4/T3; 1ExdllCT4/T3
−60 °C	+60 °C	1ExdelICT4/T3; 1ExdIICT4/T3
−60 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
−60 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
−20 °C	+60 °C	Ex ed IIB T4 Gb
−60 °C	+60 °C	Ex de IIC T4/T3 Gb; II 2 G Ex d IIC T4/T3 Gb
−60 °C	+60 °C	Ex de IIC T4/T3 Gb; II 2 G Ex d IIC T4/T3 Gb
	температурь миним. -60 °C -60 °C	температуры миним. макс. -60 °С +60 °С -60 °С +60 °С

Для обеспечения долговечности оборудования особенно важна эффективная защита от коррозии. Антикоррозионная защита электроприводов AUMA осуществляется в два этапа: предварительная химическая обработка поверхности и нанесение порошка в два слоя на отдельные комплектующие. В соответствии с категориями коррозионной активности по стандарту EN ISO 12944-2 выделяются различные уровни защиты для соответствующих областей применения.

Цвет

Стандартный цвет – серебристо-серый (схожий с RAL 7037). Другие оттенки на заказ.

		Электроприводы SAEx, SQEx и блоки управления AMExC, ACExC		
	этегории коррозионной активности среды согласно EN ISO 12944-2 пассификация условий окружающей среды		Общая толщина слоя	
С1 (незначительный):	Обогреваемые помещения с нейтральной атмосферой	KS	140 мкм	
С2 (малый):	Необогреваемые здания и сельские районы с низким уровнем загрязнения			
СЗ (умеренный):	Производственные цеха с влажным воздухом и умеренной концентрацией вредных веществ. Городская и промышленная атмосфера с умеренным загрязнением оксидом серы			
С4 (высокий):	Химические установки и районы с умеренной концентрацией солей			
C5-I (очень высокий, промышленный):	Промышленные зоны с почти постоянной конденсацией и высоким уровнем загрязнения			
C5-M (очень высокий, морской):	Среда с высокой соленостью, почти постоянной конденсацией и высоким уровнем загрязнения			
Категории коррозион	ной активности, превышающие требования стандарта EN ISO 12944-2			
Экстремальный (градирни):	Среда с чрезвычайно высокой соленостью, постоянной конденсацией и высоким уровнем загрязнения	КХ КХ-G (без алюминия)	200 мкм	

Антикоррозионная защита AUMA сертифицирована союзом TÜV Рейнланда.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

К системе безопасности относятся также средства, которые в случае возникновения аварийной ситуации минимизируют ущерб, который может быть причинен людям, окружающей среде и оборудованию.

Приводы AUMA в огнестойком корпусе продолжают работать даже во время пожара (в течение 30 минут при температуре до 1 100 °C), что позволяет персоналу принять меры по устранению причины аварии, например, путем перекрытия подачи горючего материала к источнику пожара.

Антикоррозионные свойства описанных выше вариантов, по сравнению с неогнеупорными устройствами, полностью идентичны.


Противопожарное покрытие K-MASS™

Огнестойкость обеспечивается запатентованным покрытием $K\text{-MASS}^{\text{тм}}$ производства компании Thermal Designs Inc. В случае пожара покрытие вспенивается и поглощает поступающую извне тепловую энергию огня.

Доступ к элементам управления и к внутреннему отсеку приводов полностью сохраняется. Все элементы корпуса обрабатываются противопожарным покрытием отдельно. Установка, ввод в эксплуатацию и техобслуживание осуществляются по аналоговой связи с неогнеупорными устройствами.

Противопожарное средство MOV FR

Противопожарное средство марки MOV Ltd. представляет собой огнестойкое покрытие (наименование «FR Coating»), которое состоит из нескольких оболочек, скрепленных между собой резьбовыми соединениями. Оболочка плотно охватывает привод. Такой противопожарной защитой можно оснащать уже смонтированные приводы. Во время пожара отдельные сегменты вспениваются, расплавляются и превращаются в сплошное покрытие, которое поглощает тепловую энергию.

Режим управления арматурой зависит от области применения и ее конструктивного типа. Стандарт EN 15714-2 включает в себя три норматива:

- > Класс А: Режим ОТКРЫТЬ-ЗАКРЫТЬ.
 Электропривод перемещает арматуру на протяжении всего участка хода от положения ОТКРЫТО до положения полностью ЗАКРЫТО и обратно.
- > Класс В: Импульсное перемещение, установка в определенное положение или режим позиционирования.

 Электропривод время от времени перемещает арматуру в любое положение на участке хода (полное открытие, промежуточное положение, полное закрытие).
- Класс С: Регулирование или режим регулирования.
 Электропривод в непрерывном режиме перемещает арматуру в любое положение на участке хода от ОТКРЫТО до ЗАКРЫТО.

Количество переключений и режим работы электродвигателя

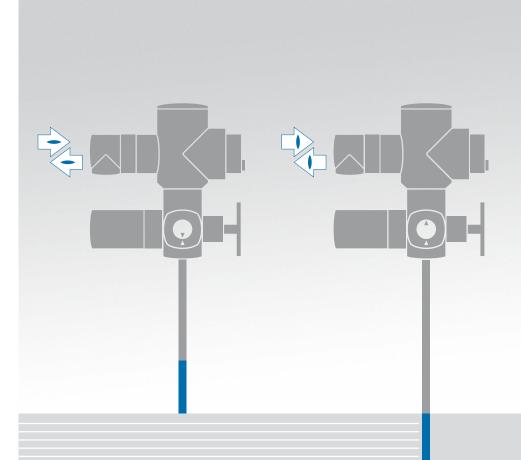
Механические нагрузки на привод в режиме регулирования отличаются от нагрузок в режиме Открыть-Закрыть. Поэтому для разных режимов работы предусмотрены соответствующие типы приводов.

К типичным отличительным особенностям относятся режимы работы приводов в соответствии со стандартами МЭК 60034-1 и EN 15714-2 (см. также страницу 80). Для режима регулирования дополнительно указывается допустимое количество пусков.

Приводы для режима «Открыть-Закрыть» и режима позиционирования

(классы А и В, режимы работы S2 - 15 мин/30 мин)

Для приводов AUMA, работающих в режиме Открыть-Закрыть и в режиме позиционирования, принято типообозначение SAEx и SOEx:


- > SAEx 07.2 SAEx 16.2
- > SAEx 25.1 SAEx 40.1
- > SQEx 05.2 SQEx 14.2

Приводы для режима регулирования (класс C, режимы работы S4 – 25 %/50 %)

Для многооборотных приводов AUMA, работающих в режиме регулирования, принято типообозначение SAREX и SQREX:

- > SAREx 07.2 SAREx 16.2
- > SAREx 25.1 SAREx 30.1
- > SQREx 05.2 SQREx 14.2

ОСНОВНЫЕ ФУНКЦИИ ПРИВОДОВ

Режим ОТКРЫТЬ - ЗАКРЫТЬ

Это базовый режим управления. Для работы в этом режиме достаточно обеспечить команды управления ОТКРЫТЬ и ЗАКРЫТЬ, а также сигналы обратной связи Конечное положение ОТКРЫТО и Конечное положение ЗАКРЫТО.

Автоматическое отключение осуществляется по положению или по моменту.

ОТКЛЮЧЕНИЕ В КОНЕЧНЫХ ПОЛОЖЕНИЯХ

Привод отключается при достижении конечного положения. В зависимости от типа арматуры применяются два типа отключения.

> Отключение по положению

Привод отключается при достижении установленного конечного положения.

> Отключение по моменту

Привод отключается при достижении установленного крутящего момента в конечном положении арматуры.

В приводах, не оснащенных блоками управления, тип отключения задается через внешний модуль управления. В приводах с блоками управления AMExC или ACExC тип отключения задается в самих блоках управления, при этом для двух конечных положений он может быть разным.

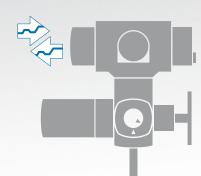
ФУНКЦИИ ЗАЩИТЫ

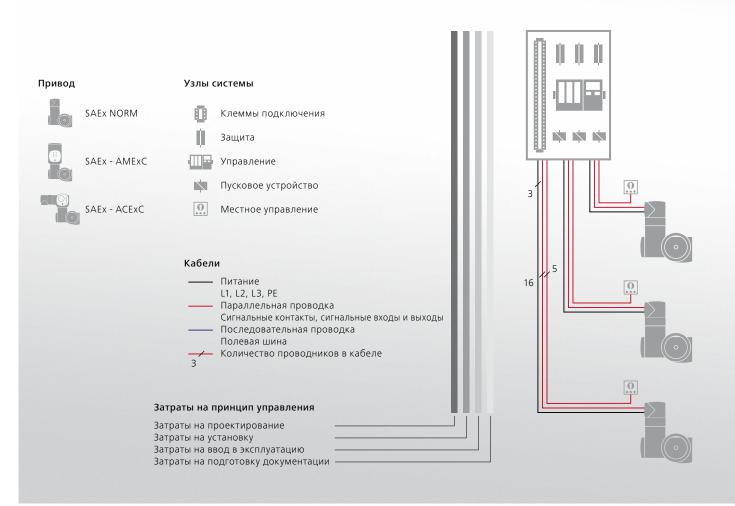
Защита арматуры от перегрузки

В случае повышения значения крутящего момента вследствие, например, попадания постороннего предмета на шток арматуры, привод отключится во избежание повреждения арматуры.

Термозащита электродвигателя

В обмотку электродвигателя приводов AUMA устанавливаются РТС-термисторы или термовыключатели.

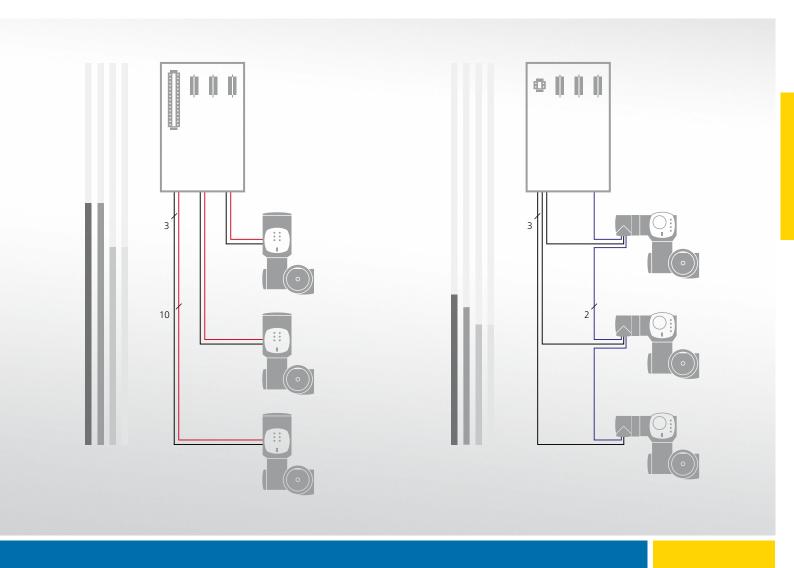

Термовыключатели или РТС-термисторы обеспечивают более высокую степень защиты, чем реле тепловой перегрузки, поскольку температура измеряется непосредственно на обмотках электродвигателя.



Управление через уставку

Блок управления получает уставку от вышестоящей РСУ в виде, например, сигнала 0/4 – 20 мА. Встроенный позиционер сравнивает полученное значение с текущим положением арматуры и управляет электродвигателем так, чтобы действительное положение стало равным установленному значению. Положение арматуры передается на РСУ.

ПРИНЦИПЫ УПРАВЛЕНИЯ


Приводы AUMA могут подключаться к любой системе автоматизации. При наличии встроенного блока управления не требуется производить проектирование, установку и изучение документации внешних систем управления. Кроме того, это позволит значительно упростить процесс ввода оборудования в эксплуатацию.

Внешнее управление

Данный принцип управления предусматривает обработку и передачу на внешний блок управления всех сигналов от привода (сигналов от концевых и моментных выключателей, защиты электродвигателя и сигналов о положении арматуры). Программируя параметры, необходимо обратить особое внимание на наличие защитных механизмом и минимизировать время задержки.

Блок выключателей для управления электродвигателем устанавливается в шкафу управления и соединяется с приводом.

Панель местного управления (если она необходима) устанавливается рядом с приводом и интегрируется во внешний блок управления.

Встроенный блок управления

При наличии встроенного блока управления приводом можно управлять через панель местного управления сразу после подачи питания. Блок управления полностью совместим с приводом.

Привод можно настраивать местно, непосредственного подключения к РСУ не требуется. Только команды управления и сигналы обратной связи по-прежнему передаются от системы управления на привод и обратно. Любые переключения режима работы электродвигателя выполняются самим устройством практически без задержки.

Приводы AUMA могут поставляться в комбинации с блоком управления AMExC или ACExC.

Полевая шина

В системах полевой шины все приводы подключаются к РСУ через стандартные двухпроводные кабели. По этой линии происходит обмен командами управления и сигналами обратной связи между приводами и РСУ.

Отсутствие устройств ввода-вывода при использовании полевой шины позволяет сократить занимаемую площадь в шкафу управления. Применение двухпроводной линии упрощает ввод в эксплуатацию и снижает стоимость, особенно в системах с длинными кабелями.

Кроме того, соединение по полевой шине позволяет передавать в диспетчерскую информацию о профилактическом ТО и диагностике. Таким образом, появляется возможность интегрировать полевые устройства в систему управления и диагностики, которая повышает отказоустойчивость оборудования.

Приводы AUMA со встроенными блоками управления ACExC оснащаются интерфейсами для подключения ко всем стандартным системам полевой шины.

ВНЕДРЕНИЕ В РСУ - БЛОКИ УПРАВЛЕНИЯ АМЕХС И АСЕХС

Встроенные блоки управления обрабатывают сигналы от привода и команды управления, без промедления выполняют команды отключения, используя реверсивные контакторы или тиристоры.

Блоки управления передают обработанные сигналы от приводов на систему высшего уровня.

Управление приводом также может осуществляться через панель местного управления.

Блоки управления AMExC и ACExC могут быть смонитированы как на приводы SAEx, так и на приводы SQEx. Для РСУ такая конфигурация является унифицированной и стандартной.

Описание функциональных возможностей блоков управления содержится на стр. 84.

AMEXC 01.1 (AUMA MATIC)

Блок управления AMExC является идеальным решением в том случае, если требования ограничиваются параллельной передачей сигнала и небольшим числом сигналов обратной связи.

Во время ввода в эксплуатацию некоторые параметры устанавливаются с помощью ползунковых переключателей, например, тип отключения в конечных положениях.

Управление осуществляется командами ОТКРЫТЬ, СТОП, ЗАКРЫТЬ. В качестве сигналов обратной связи на РСУ передаются, например, сигнал о достижении конечного положения и общий сигнал ошибки. Эти сигналы отображаются на панели местного управления с помощью световой индикации. В качестве опции положение арматуры может быть передано на РСУ в виде сигнала 4 – 20 мА.

ACEXC 01.2 (AUMATIC)

Блок управления ACExC является отличным решением, если область применения предполагает наличие самоподстраивающихся функций управления, регистрации данных, настраиваемого интерфейса, а также если арматура и привод входят в интеллектуальную систему диагностики.

Блок ACExC оснащается параллельным интерфейсом с возможностью его настройки, а также интерфейсами, необходимыми для автоматизации в системах полевых шин.

Функции диагностики включают протоколирование событий с временными отметками, протоколирование моментной характеристики, постоянный контроль температуры и уровня вибрации на приводе, а также подсчет количества пусков и времени работы электродвигателя.

В дополнение к основным функциям предлагается ряд возможностей, которые отвечают специальным требованиям, в том числе байпас момента для срыва клапанов в случае тугой затяжки и управление временем работы во избежание гидроудара.

При разработке блока управления второго поколения ACEXC 01.2 особое внимание уделялось удобству использования и простоте интеграции приводов в PCУ (распределенную систему управления). Графический дисплей больших размеров используется для программирования средств управления через меню. Для этого в качестве опции используется программа AUMA CDT (см. страницу 30) через беспроводное присоединение Bluetooth. Если управление осуществляется по цифровому интерфейсу, программирование блока управления АС происходит из диспетчерской.

УДОБНОЕ УПРАВЛЕНИЕ

Современные приводы можно адаптировать к различным требованиям автоматизации. Функции мониторинга и диагностики позволяют подавать сигналы и собирать рабочие данные.

Через интуитивно понятный пользовательский интерфейс блока управления ACExC оператор получает доступ ко всем данным привода.

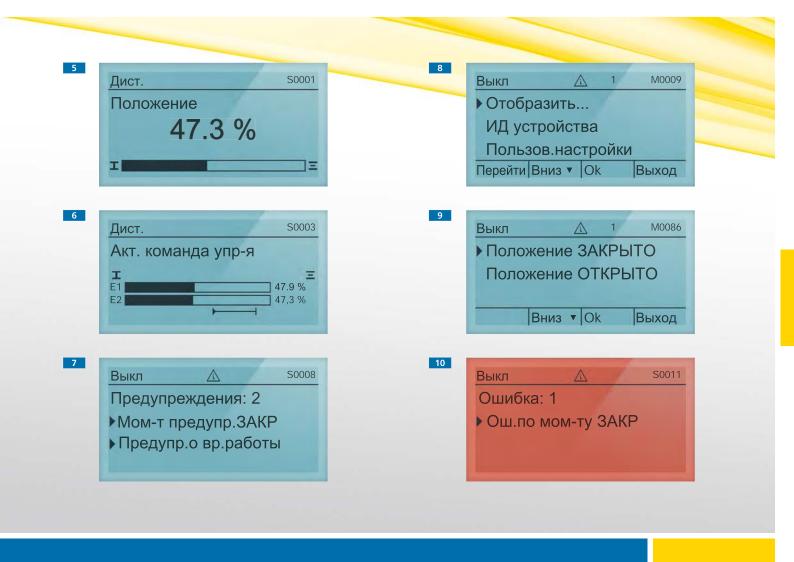
Настройки производятся без дополнительных инструментов программирования.

Текстовые показания на дисплее предоставляются на большом количестве языков.

Защита паролем

Одной из важных функций безопасности является защита ACExC паролем, которое предотвращает несанкционированный доступ к параметрам оборудования.

1 Дисплей


Графический дисплей предназначен для визуализации текстов, графических элементов и характеристик.

Сигнальные лампы

Состояние привода сигнализируется с помощью индикаторных ламп, которые ярко светятся и видны с большого расстояния.

Выбор режима управления

Ключ-селектор МЕСТН. - ВЫКЛ.- ДИСТ. используется для выбора режима управления (Дистанционный или Местный).

4 Управление и настройка параметров

В зависимости от положения ключа-селектора кнопки активируют либо работу привода от электродвигателя, либо запрос сигналов о положении, либо навигацию в меню.

Индикация положения арматуры

Положение арматуры на большом индикаторе видно с большого расстояния.

Индикация команд управления/уставок

Команды управления и уставочные значения, поступающие от РСУ, отображаются на дисплее.

7 Диагностика и мониторинг через дисплей

Условия эксплуатации во время работы контролируются непрерывно. В случае выхода параметров за пограничные значения (температуры и др.) привод АСЕхС подает сигнал предупреждения.

8 Главное меню

В главном меню отображаются данные привода и рабочие параметры.

9 Режим Non-Intrusive

Если привод оснащен электронным блоком выключателей (см. страницу 53), конечные положения и моменты срабатывания можно настроить через дисплей без открытия корпуса привода.

10 Сбой

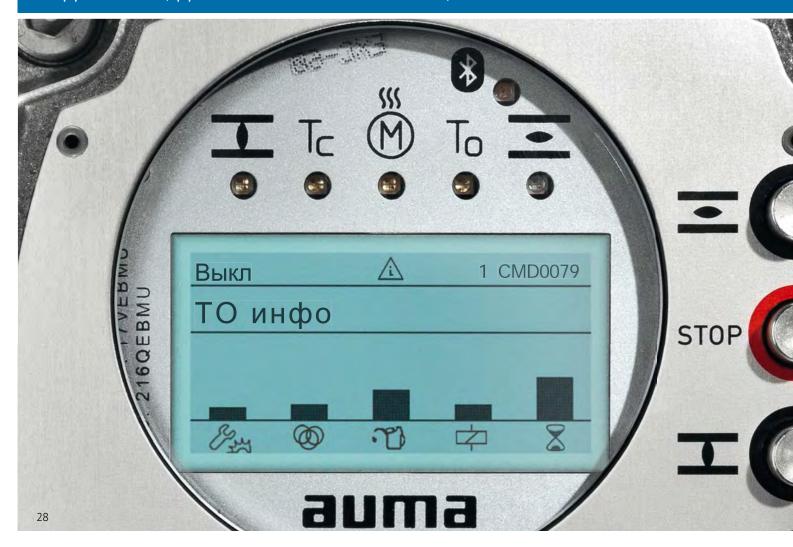
В случае сбоя подсветка дисплея становится красного цвета. Причину сбоя можно запросить через дисплей. Приводы должны обладать такими характеристиками, как длительный срок службы, нечастая необходимость в проведении ТО и удобство техобслуживания. Благодаря этому значительно снижаются эксплуатационные расходы.

Поэтому при разработке оборудования компания AUMA особое внимание уделяет средствам диагностики.

Техобслуживание по необходимости

Время работы, частотность переключений, крутящий момент, температура окружающей среды - все эти условия могут значительно отличаться от привода к приводу, и соответственно, каждое устройство имеет свой график техобслуживания. Из этих непрерывно контролируемых параметров рассчитываются четыре параметра состояния для уплотнений, смазки, реверсивных контакторов и механики. На дисплей выводится гистограмма о необходимости техобслуживания. При достижении предельного значения привод подает соответствующее сообщение. В качестве альтернативы, согласно графику проведения техобслуживания могут контролироваться установленные интервалы.

Вне спецификации - Профилактика сбоев


Оператор получает сообщение о возможности возникновения сбоя. В сообщении указывается, что привод работает в недопустимых условиях, например, при повышенной температуре окружающей среды или сильных вибрациях, что может привести к сбою, если такие недопустимые условия сохраняются в течение длительного времени.

Система управления оборудованием

Появление одного из двух вышеуказанных сообщений является сигналом о необходимости принятия профилактических мер, что является задачей системы управления оборудованием AUMA. Для выполнения соответствующих работ задействуется персонал местной сервисной службы или приглашаются специалисты компании AUMA.

Техобслуживание через компанию AUMA может осуществляться на контрактной основе. Техническая служба компании AUMA производит необходимые мероприятия при появлении соответствующих сообщений о состоянии оборудования.

НАДЕЖНОСТЬ, ДЛИТЕЛЬНЫЙ СРОК СЛУЖБЫ, СЕРВИС

Журнал событий с временными метками / Сбор рабочих данных

В журнал событий вносятся такие действия, как изменение настроек, видов отключения, предупреждения, сбои и время работы. Все события сопровождаются меткой о времени наступления события. Данная функция является важным средством диагностики для ACExC.

Диагностика арматуры

Блок управления ACExC регистрирует характеристики крутящего момента в разные промежутки времени. Сравнение этих данных позволяет сделает выводы об изменениях характеристик арматуры.

Быстрый анализ данных

В системе диагностики применятся классификация NAMUR NE 107. Диагностические данные можно запрашивать через шину или программу AUMA CDT (см. страницу 32) и выводить на дисплей устройства.

Приводы AUMA с интерфейсом полевой шины поддерживают стандартные возможности дистанционной диагностики через диспетчерскую (см. страницу 41).

Классификация сигналов состояния согласно NAMUR NE 107

Классификация NAMUR NE 107 необходима для того, чтобы предоставить персоналу унифицированную и понятную символику сообщений о состоянии оборудования.

Требуется техобслуживание

Приводом можно управлять из диспетчерской. Устройство должно быть проверено специалистом во избежание сбоев.

Проверка функций

Во время техобслуживания управление через диспетчерскую невозможно.

Вне спецификации

Несоблюдение предписанных условий эксплуатации, определяемых самим приводом путем самомониторинга. Из диспетчерской управление приводом сохраняется.

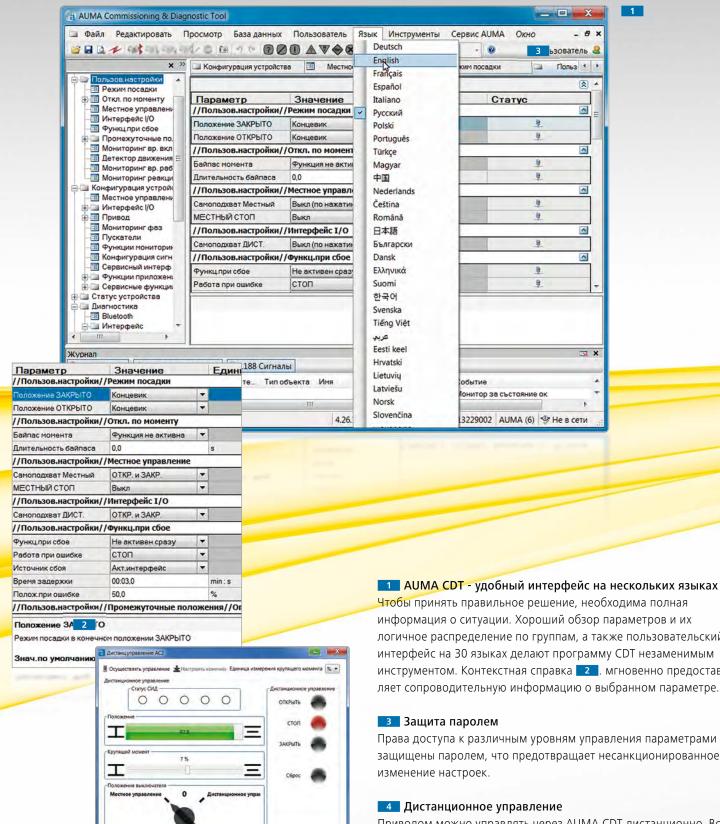
Сбой

Из-за функциональных сбоев на приводе или на периферийных устройствах приводом невозможно управлять из диспетчерской.

AUMA CDT ДЛЯ ACEXC - БЫСТРЫЙ ВВОД В ЭКСПЛУАТАЦИЮ

С помощью органов управления и индикации блока ACExC осуществляется просмотр данных и настройка параметров без каких-либо вспомогательных средств. Это особенно важно в ситуациях, когда требуется оперативность. Комфортное управление параметрами осуществляется в программном приложении AUMA CDT.

Данная программа ввода в эксплуатацию и диагностики разработана для электроприводов, смонтированных с блоком управления АСЕхС. Программу для ноутбука и карманного компьютера можно бесплатно загрузить через www.auma.com.


Соединение с приводом осуществляется по беспроводной связи Bluetooth с шифрованием и защитой паролем.

Быстрый ввод в эксплуатацию

С помощью программы AUMA CDT можно получить полный обзор всех параметров устройства. В качестве вспомогательного средства настройки в программе широко применяется контекстная справка.

Данная программа позволяет выполнить настройки автономно от привода, сохранить их и впоследствии передать на устройство. Кроме того, настройки одного привода можно копировать и переносить на другой привод.

Параметры привода можно хранить в базе данных AUMA CDT.

11 AUMA CDT - удобный интерфейс на нескольких языках

<mark>Чтобы принять правильное решение, необходима полная</mark> информация о ситуации. Хороший обзор параметров и их логичное распределение по группам, а также пользовательский интерфейс на 30 языках делают программу CDT незаменимым инструментом. Контекстная справка 2. мгновенно предостав-

Права доступа к различным уровням управления параметрами защищены паролем, что предотвращает несанкционированное

Приводом можно управлять через AUMA CDT дистанционно. Все световые сигналы, а также сообщения о рабочем состоянии отображаются на дисплее АСЕхС. Подавать команды управления и контролировать их выполнение можно с помощью ноутбука.

AUMA CDT ДЛЯ ACEXC - ИНТЕРФЕЙС ДИАГНОСТИКИ

Сбор рабочих данных, запись характеристик и адекватный анализ полученных параметров являются условиями для повышения качества эксплуатации полевых устройств и увеличения их срока службы.


Программа AUMA CDT предоставляет целый ряд аналитических инструментов, которые помогают на основе собранных данных принимать соответствующие меры. Обратная связь со службой сервиса компании AUMA позволяет операторам оптимизировать рабочие параметры оборудования и запланировать необходимые мероприятия по техобслуживанию.

AUMA CDT - центр информации

Программа AUMA CDT позволяет загрузить с сервера AUMA электрическую схему и справочную документацию в соответствии с серийным номером изделия. Данные электропривода можно сохранить на ноутбуке и переслать их в ближайший отдел сервиса AUMA для дальнейшей обработки.

Графики характеристик могут быть представлены в AUMA CDT с помощью службы LiveView, что облегчает анализ работы устройств. Для обработки данных в динамике программа AUMA CDT включает в себя журнал событий с хронологическим и графическим видом просмотра.

Программное приложение AUMA CDT является идеальным инструментом для просмотра общих характеристик привода, оценки его статуса и непосредственно обрудования и их обработки в непосредственных условиях эксплуатации.

AUMA CDT в качестве главного устройства шины

Отказ в работе привода может быть связан со сбоем коммуникации между станцией управления и приводом. При параллельной связи сигнальный путь между станцией управления и приводом проверяется измерительным прибором. Функциональные проверки рекомендуются также для управления по полевой шине.

Программа AUMA CDT может применяться в качестве временного главного устройства шины, что позволяет проверить правильность обмена данными с приводом. Если данные принимаются и обрабатываются без ошибок, значит, сбой не связан с электроприводом.

Другие функциональные возможности AUMA CDT как главного устройства шины: Ввод приводов в эксплуатацию возможен при отсутствии связи с РСУ, например, в сборочном цехе.

Примеры для обработки параметров

- > 1 Время работы электродвигателя в течение всего хода арматуры показывает, будет ли положение арматуры находиться в ожидаемом диапазоне после прошедшего отрезка времени.
- > 2 Индикация состояния показывает, какой сигнал подается в РСУ.

3 AUMA Support App

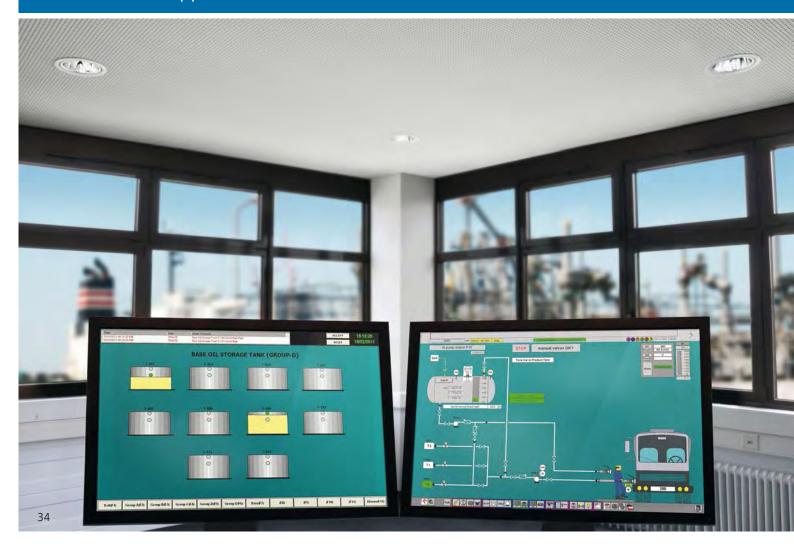
Документацию устройства можно просматривать в программном приложении AUMA Support App. Чтобы просмотреть сопроводительную документацию, с помощью смартфона или планшетного компьютера сканируйте код DataMatrix на заводской табличке. После этого с сервера AUMA можно загрузить инструкцию по эксплуатации, электрическую схему, справочные таблицы и акт приемо-сдаточных испытаний привода.

Приложение AUMA Support App бесплатно распространяется через Google Play Store (для устройств Android) и через Apple Store (для устройств Apple). С помощью кода QR предоставляется автоматический доступ к необходимой версии приложения.

Интерфейс механического соединения привода с арматурой является стандартизованным. Интерфейс связи с РСУ, напротив, непрерывно модернизируется.

В различных отраслях и условиях могут применяться параллельное управление, полевые шины, системы дублирования. При управлении по полевой шине применяются различные протоколы.

Компания AUMA поставляет приводы с интерфейсами для любых распределенных систем управления и типов связи.


Команды управления и сигналы электроприводов

В самом простом режиме работы достаточно обеспечить команды управления ОТКРЫТЬ/ЗАКРЫТЬ, сигналы обратной связи о достижении конечных положений ОТКРЫТО/ЗАКРЫТО, а также сигнал общего сбоя. Эти пять дискретных сигналов обеспечивают надежную работу отсечной арматуры.

При необходимости регулирования положения арматуры требуются дополнительные сигналы, а именно: уставка положения, сигнал положения (фактическое значение). При параллельной связи эти сигналы, как правило, являются аналоговыми (4 – 20 мA).

Цифровые протоколы расширяют полосу пропускания для передачи информации. Кроме команд управления и сигналов обратной связи, через полевую шину от РСУ передаются параметры оборудования и рабочие данные.

СВЯЗЬ - НЕСТАНДАРТНЫЕ ИНТЕРФЕЙСЫ

AMExC

Все входы и выходы снабжены жестким проводным соединением. Распределение контактов смотрите в схеме подключений.

- Три цифровых входа для команд управления ОТКРЫТЬ, СТОП, ЗАКРЫТЬ
- > Пять цифровых выходов со следующими функциями: конечное положение ЗАКРЫТО, конечное положение ОТКРЫТО, ключ селектор в положениях ДИСТ./МЕСТНЫЙ, сигнал общего сбоя
- > Аналоговый выход 4 20 мА для индикации положения на дисплее опция.

Цифровые входы и выходы развязаны по потенциалу, аналоговый выход изолирован гальванически.

ACExC

Распределение выходов можно изменить позднее через блок управления ACExC. В зависимости от исполнения ACExC обеспечивает:

- > До 6 цифровых входов, например, для команд управления ОТКРЫТЬ, СТОП, ЗАКРЫТЬ, сигналов активации для панели местного управления, аварийных сигналов и т.д.
- > До 10 цифровых выходов, например, для сигналов конечных положений, промежуточных положений, положения ключаселектора, сбоев и т.д.
- > До 2 аналоговых входов (0/4 20 мА), например, для передачи уставки на позиционер или ПИД-регулятор
- До 2 аналоговых выходов (0/4 20 мА), например, для сигналов обратной связи о положении арматуры и крутящем моменте

Цифровые входы и выходы развязаны по потенциалу, аналоговые выходы изолированы гальванически.

Соединение по полевой шине применяется, в первую очередь, по причине более низкой стоимости. Кроме того, в системы автоматизации полевых устройств, в том числе приводов, успешно внедряются интерфейсы последовательной связи. Удаленная настройка параметров, центральная система управления оборудованием и другие повышающие эффективность функции без полевой шины были бы невозможны. Приводы компании AUMA с интерфейсами полевой шины являются примером оборудования, разработанного по последнему слову техники.

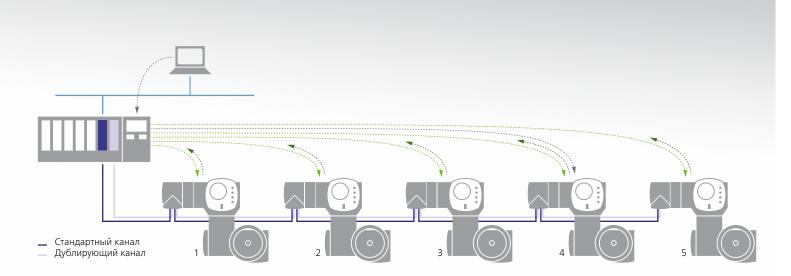
Полевые устройства AUMA

Существует большое количество различных цифровых протоколов связи, применение которых может зависеть от типа оборудования и условий применения. Приводы AUMA эксплуатируются по всему миру с любыми типами арматуры и интерфейсами для различных, доказавших свою эффективность систем соединения по полевой шине.

- > Profibus DP
- > Modbus RTU
- > Foundation Fieldbus
- > HART

Устройства AUMA могут оснащаться цифровыми и аналоговыми выходами для дополнительных датчиков.

СВЯЗЬ ПО ПОЛЕВОЙ ШИНЕ


Существуют различные исполнения цифровых соединений по стандарту Profibus: Profibus PA для автоматизации процесса, Profinet для передачи данных на основе Ethernet, Profibus DP для автоматизации промышленных установок, энергоустановок и различного оборудования. Благодаря физическому уровню (RS-485) и различным программным уровням DP-V0 (быстрый обмен циклическими и определяющими данными), DP-V1 (ациклический доступ к параметрам устройства и диагностическим данным), а также DP-V2 (дополнительные функции, например, протоколирование с пометкой времени или дублирование), Profibus DP является идеальным решением для автоматизации установок.

- Международный стандарт, МЭК 61158/61784 (CPF3), www.profibus.com
- > Эксплуатация по всему миру
- > Возможность подключения большого количества устройств
- > Стандартная интеграция в РСУ (FDT, EDDL)
- > Большой выбор устройств
- > Области применения: очистные сооружения, дамбы, насосные станции, газохранилища, нефтебазы

Приводы AUMA c Profibus DP

- > Совместимость с Profibus DP-V0, DP-V1 и DP-V2
- > Высокая скорость передачи данных (до 1,5 Мбит/с соответствует прибл. 0,3 мс/привод)
- > Интеграция в РСУ с помощью FDT или EDD (см. также страницу 41)
- > Длина кабеля до 10 км (без репитера до 1 200 м)
- > Подключение до 126 устройств
- > Опция: Дублирующая линейная топология
- > Опция: Передача данных по оптоволоконным кабелям (см. страницу 45)
- > Опция: Защита от повышенного напряжения до 4 кВ

Цикл шины с 5 электроприводами

- Циклический запрос данных процесса (управляющий)
- Циклическая обратная связь данных процесса (подчиненный)
- 🔃 Ациклическая передача данных диагностики и параметров

Сравнение времени цикла

Profibus

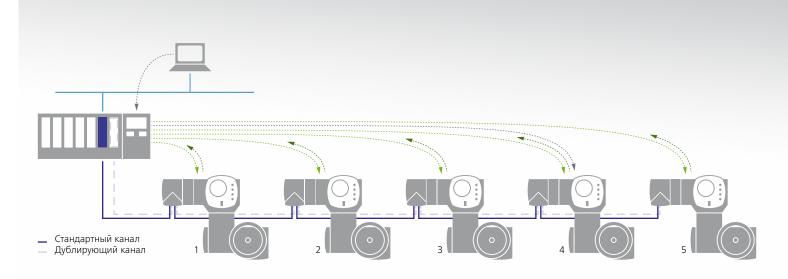
Modbus

Foundation Fieldbus

Modbus является простым, но многофункциональным протоколом соединения по полевой шине. Предлагаются различные функции автоматизации (обмен простой информацией в двоичном коде, аналоговыми значениями, параметрами устройств, диагностическими данными и др.).

Для автоматизации установок часто используется простой и надежный физический уровень передачи данных RS-485.

На основе этого интерфейса Modbus поддерживает формат передачи данных в виде пакетов (телеграмм) (Modbus RTU, Modbus ASCII и др.). При использовании версии Modbus TCP/IP с Ethernet часто реализуется интеграция в вышестоящую систему автоматизации.


- > Международный стандарт, МЭК 61158/61784 (CPF15), www.modbus.org
- > Простой протокол
- > Эксплуатация по всему миру
- > Подходит для простых задач автоматизации
- > Области применения: очистные сооружения, дамбы, насосные станции, газохранилища, нефтебазы

Приводы AUMA и Modbus RTU

- > Высокая скорость передачи данных (до 115,2 кбит/с, соотв. прибл. 20 мс/привод)
- > Длина кабеля до 10 км (без репитера до 1 200 м)
- > Подключение до 247 устройств
- > Опция: Дублирующая линейная топология
- > Опция: Передача данных по оптоволоконным кабелям (см. страницу 45)
- > Опция: Защита от повышенного напряжения до 4 кВ

СВЯЗЬ ПО ПОЛЕВОЙ ШИНЕ

Цикл шины с 5 электроприводами

<u>1</u> 2 3 4 → 4

- Циклический запрос данных процесса (управляющий)
- Циклическая обратная связь данных процесса (подчиненный)
- 🔃 Ациклическая передача данных диагностики и параметров

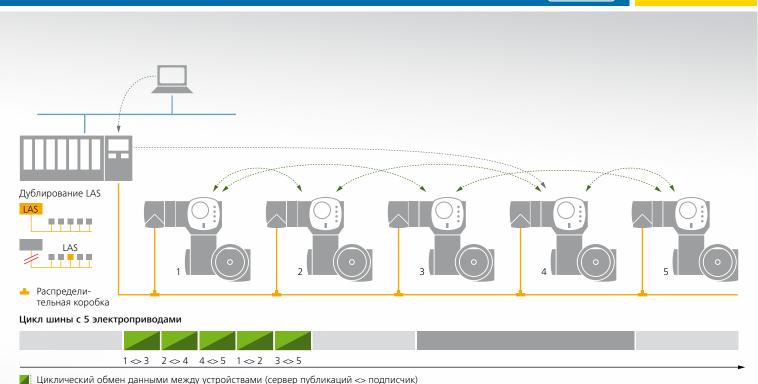
Сравнение времени цикла

Profibus

Modbus

Foundation Fieldbus

Технология Foundation Fieldbus (FF) специально предназначена для автоматизации процессов. Физическая среда передачи данных применяет протоколы FF H1 на базе стандартов МЭК 61158-2 и ISA SP 50.02. Эти стандарты определяют условия передачи данных и энергообеспечение полевых устройств по одной и той же паре проводов. FF H1 допускает применение различных топологий. Применение распределительных коробок или сегментных барьеров позволяет реализовывать различные разводки соединений. Кроме обычных линейных и древовидных структур стандарт FF H1 поддерживает соединения «точка-точка», а также структуры с каналом связи и отдельными ответвлениями к полевым устройствам.


Интерфейсы обмена данными Foundation Fieldbus основаны на стандартных функциональных блоках, таких как AI (аналоговый вход), или AO (аналоговый выход) входы и выходы которых соединены друг с другом. Таким образом, полевые устройства FF устанавливают связь друг с другом напрямую, если в сегменте имеется Активный планировщик сетей AПС (Link Active Scheduler) для координации обмена данными FF.

Приводы AUMA и Foundation Fieldbus

Электроприводы AUMA совместимы с версией FF-H1

- > Скорость обмена данными: 31,25 кбит/с, обычное время макроцикла: 1 сек
- > Длина кабеля до 9,5 км (без репитера до 1 900 м)
- > До 240 устройств, обычно от 12 до 16 полевых устройств
- > Интеграция в РСУ с помощью FDT или DD (см. также страницу 41)
- > Электроприводы AUMA могут выполнять задачи планировщика AПС
- > Опция: Защита от повышенного напряжения до 4 кВ
- > Опция: Соединение FISCO

Ациклическая передача значений диагностики и параметров (распределение отчетов, сервер клиента)

Сравнение времени цикла

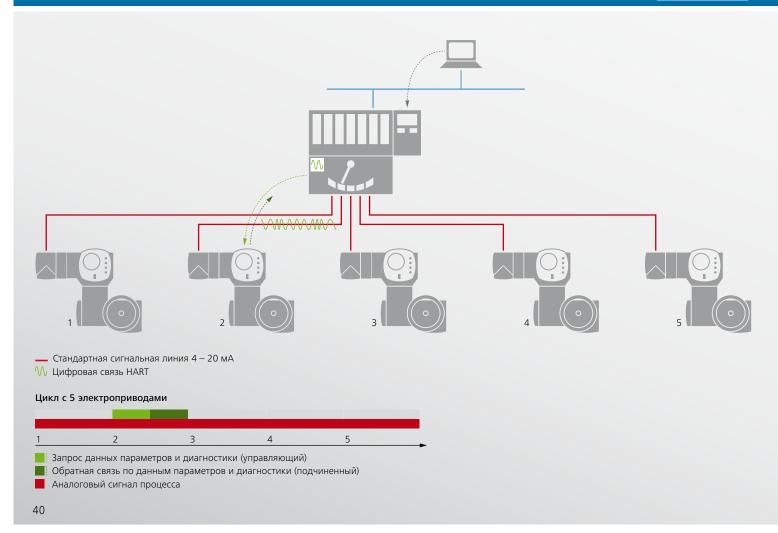
Profibus

Modbus

Foundation Fieldbus

Стандарт HART основан на применении широко используемого для передачи аналоговых значений стандартного сигнала 4 – 20 мА. К аналоговому сигналу добавляется дополнительный сигнал коммуникации HART. Преимущества: цифровой сигнал по протоколу HART может передаваться одновременно с аналоговым сигналом. Таким образом, 4 – 20 мА применяется в том числе и для передачи цифровых сигналов, что позволяет считывать дополнительные параметры и данные диагностики с полевых устройств.

Протокол HART применяет технологию «главное устройство - подчиненное устройство» с возможностью передачи большого количества команд. Обычно передача данных производится по соединению «точка-точка» (4 – 20 мA).


- > Международный стандарт, МЭК 61158/61784 (СРГ9)
- > Эксплуатация по всему миру
- > Возможность подключения большого количества устройств
- > Стандартная интеграция в РСУ (FDT, EDD)
- > Большой выбор устройств

Приводы AUMA с HART

- > Аналоговый сигнал HART 4 20 мА для передачи уставки или фактического значения
- > Передача параметров и данных диагностики с помощью цифровой связи HART
- > Прибл. 500 мс на привод для цифровой коммуникации
- > Интеграция в РСУ с помощью EDD (см. также страницу 41)
- > Длина кабелей: прибл. 3 км

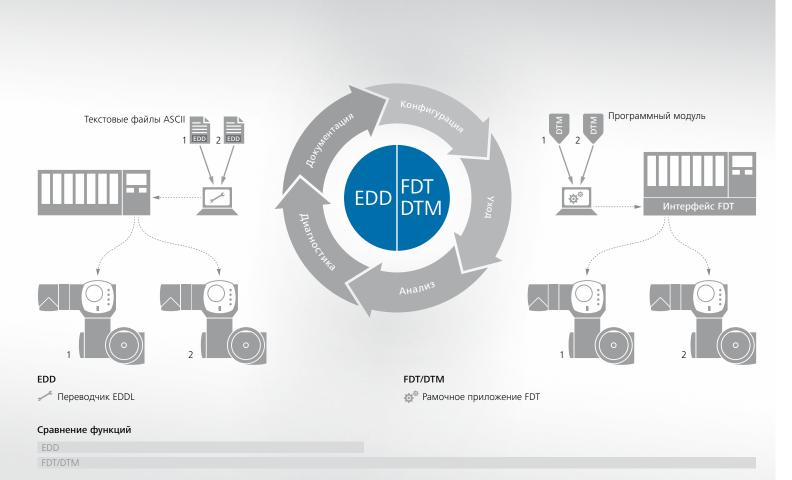
ПРОТОКОЛ СВЯЗИ - HART

EDD и FDT/DTM - это две независимые технологии, которые позволяют упростить интеграцию устройств в систему полевой шины или в систему HART. Под интеграцией понимается конфигурация устройств, замена устройств, анализ отказов, диагностика и протоколирование этих мероприятий. EDD и FDT/DTM, таким образом, играют важную роль в системе управления оборудованием и в управлении оборудованием в течение срока службы.

Кроме основных функций полевые устройства обеспечивают функции диагностики и множество специализированных функций для согласования с действительными условиями процесса. Если выполнены определенные требования (для Profibus, например, требуется протокол DP-V1), то связанный с этими функциями обмен данными может быть реализован непосредственно между станцией управления и полевым устройством. К такому обмену данными в приводах AUMA, кроме прочего, относятся сообщения состояния и диагностики по стандарту NAMUR NE 107, изменение параметров прикладных функций, данные электронного паспорта устройства, данные рабочих режимов для профилактического обслуживания.

С помощью EDD и FDT/DTM упрощается доступ к данным различных полевых устройств через станцию управления.

EDD


Для каждого устройства, которое поддерживает эту топологию, имеется описание электронного устройства EDD (Electronic Device Description). Параметры устройств описываются с помощью независимого от платформы нормативного языка описания электронных устройств (EDDL) в ASCII. Это обеспечивает создание из всех полевых устройств единой системы управления с идентичным представлением параметров.

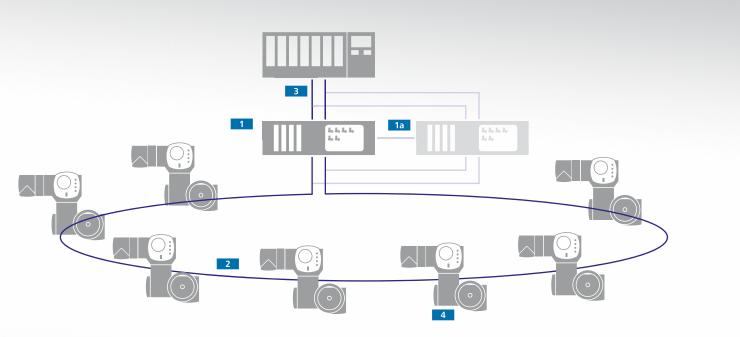
FDT/DTM

FDT (Field Device Tool) - программное определение интерфейса для внедрения DTM (Device Type Manager) в систему FDT компьютера комплексного контроля исправности средств. DTM - это программный блок, встроенный в полевое устройство. Подобно драйверу принтера, DTM установлен в FDT, чтобы визуализировать настройки и информацию полевых устройств.

EDD и DTM приводов AUMA можно загрузить через вебсайт www.auma.com.

СВЯЗЬ - ЦЕНТРАЛИЗОВАННОЕ УПРАВЛЕНИЕ ПОЛЕВЫМИ УСТРОЙСТВАМИ

SIMA - СИСТЕМНАЯ СТАНЦИЯ ПОЛЕВОЙ ШИНЫ


Мастер-станция SIMA применяется для интеграции электроприводов в распределенную систему управления. Вся коммуникация осуществляется при этом по открытым протоколам шины.

- > SIMA использует технологи «Plug and Play», которая обеспечивает максимально автоматизированную процедуру ввода в эксплуатацию подключенных приводов, независимо от PCУ.
- > SIMA контролирует сообщение с полевыми устройствами, включая все дублирующие каналы связи и компоненты срочного резервирования.
- > SIMA, как накопитель данных, собирает все сообщения о состоянии привода и передает их на РСУ для поддержания работоспособности системы.
- > SIMA упрощает доступ ко всем данным подключенных электроприводов.
- > SIMA работает в качестве средства диагностики, позволяющего быстро идентифицировать и устранить ошибку.
- > SIMA выполняет роль шлюза, согласовывая соединение приводов по полевой шине с имеющимися интерфейсами РСУ.

Интерфейсы конфигурации

В зависимости от исполнения станция SIMA предлагает различные средства для управления и конфигурации. К ним относятся встроенный сенсорный экран, разъемы для манипулятора-мыши, клавиатуры, внешнего дисплея и Ethernet для подключения станции SIMA к сети.

Визуализация состояния системы осуществляется с помощью элементов графического интерфейса. Настройки параметров защищены паролями различных уровней доступа.

Петлевое дублирование

Связь без сбоев

Связь при наличии сбоев

Сравнение максимальных длин кабелей в системах соединения по полевой шине

без SIMA 10 км

с SIMA 296 км

■ Мастер-станция SIMA

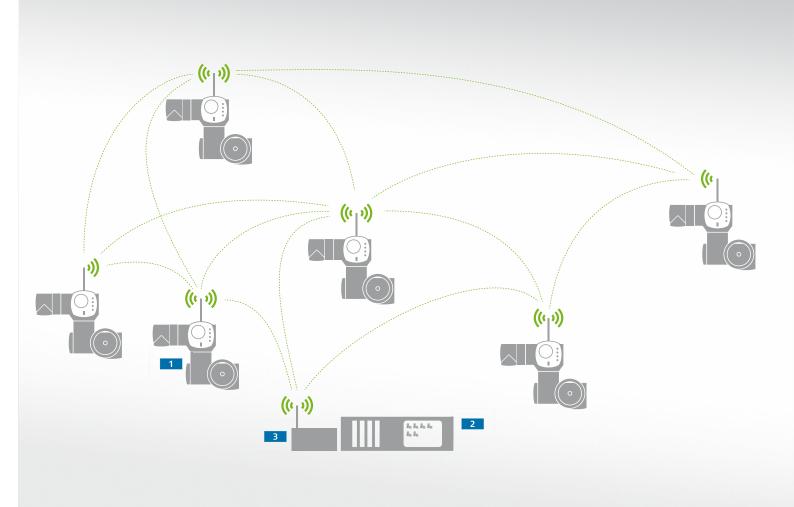
Станция SIMA сочетает в себе стандартные промышленные компоненты ПК и необходимые интерфейсы полевой шины. Аппаратное обеспечение находится в прочном промышленном корпусе 19" с защитой от электромагнитного излучения.

1a Резервная мастер-станция SIMA

Для повышения надежности системы имеется возможность установить дополнительную станцию SIMA, которая берет на себя управление в случае отказа основной станции.

Дублирующая петля Modbus

Главным преимуществом этой топологии является встроенное дублирование системы. В случае разрыва петли станция SIMA обрабатывает оба сегмента как самостоятельные линии, поэтому все приводы продолжают оставаться доступными. Приводы для данной топологии включают в себя функцию репитера для гальванической развязки сегментов петли и для усиления сигналов Modbus. Это позволяет с помощью стандартного кабеля RS-485 соединить до 247 устройств при общей длине кабелей до 296 км.


Линейная топология также реализуется с помощью станции SIMA.

3 Связь с РСУ

Связь с PCУ обеспечивается с помощью Modbus RTU или Modbus TCP/IP.

Электроприводы AUMA

Приводы оснащаются соответствующим интерфейсом связи в зависимости от протокола шины и топологии. Отдельные устройства могут отключаться от шины без нарушения связи с другими устройствами.

БЕСПРОВОДНОЕ И ОПТОВОЛОКОННОЕ СОЕДИНЕНИЕ

Существуют задачи, для которых медные проводники не могут обеспечить необходимую скорость передачи данных. В этом случае могут применяться оптоволоконные кабели. Для беспроводной связи кабели не требуются.

БЕСПРОВОДНАЯ СВЯЗЬ

Кроме отсутствия необходимости прокладывать кабели, имеются и другие преимущества: быстрый ввод в эксплуатацию и упрощенное расширение системы. Каждое устройство может установить связь с другими устройствами в радиусе приема. Многоконтурная топология повышает отказоустойчивость за счет дублирования коммуникации. В случае сбоя одного устройства или радиосоединения автоматически применяется альтернативный путь связи.

Беспроводная система является вариантом системы, построенной на базе станции SIMA. Она поддерживает в основном функции, перечисленные на странице 42.

Соединение происходит по беспроводному протоколу IEEE 802.15.4 (диапазон 2,4 ГГц). Для защиты данных и параметров устройств применяется шифрование AES 128 бит.

Электроприводы AUMA с беспроводным интерфейсом

Мастер-станция SIMA

Станция SIMA (см. страницу 42) совместно со шлюзом координирует связь с полевыми устройствами.

Беспроводной шлюз

Шлюз с диспетчером сети и диспетчером безопасности обеспечивает доступ станции SIMA κ беспроводной системе.

ПЕРЕДАЧА ДАННЫХ ЧЕРЕЗ ОПТОВОЛОКОННЫЕ КАБЕЛИ

Оптоволоконные кабели (ОВК) особенно подходят при больших расстояниях между устройствами и при необходимости высокой степени безопасности передачи данных.

Большие расстояния

Малое затухание светового сигнала в OBK позволяет преодолевать большие расстояния между устройствами и строить системы полевой шины со значительно большей длиной кабелей. При использовании многомодового волокна расстояние между устройствами может достигать 2,5 км.

Встроенная защита от повышенного напряжения

Оптоволоконные кабели, в отличие от медных, не чувствительны к электромагнитным излучениям. При установке больше не требуется специально разделять сигнальные и силовые кабели. Оптоволоконные кабели обеспечивают гальваническую изоляцию между электроприводами для защиты от повышенного напряжения, например, вследствие ударов молний.

Электроприводы AUMA с интерфейсом для оптоволоконного соединения

Оптоволоконный модуль для преобразования электрических сигналов привода в световые сигналы встроен в блок электрического подключения приводов. Подключение оптоволоконных кабелей осуществляется с помощью стандартного оптоволоконного штепсельного разъема FSMA.

В комбинации с Modbus RTU реализуются такие топологии, как «линия» и «звезда». Profibus DP позволяет дополнительно формировать структуры по топологии «кольцо». В этом случае контролируется линия оптических колец, а в случае потери соединения подается предупреждение. Данное предупреждение встроено в систему сигнализации блока управления АСЕхС. Оно отображается на дисплее и передается в РСУ в соответствии с настройками.

УНИФИЦИРОВАННЫЕ ПРИНЦИПЫ КОНСТРУКЦИИ SAEX И SQEX

Многооборотный привод SAEx и неполнооборотный привод SQEx

Базовая комплектация привода состоит из следующих элементов: электродвигатель, червячный редуктор, блок выключателей, ручной маховик для аварийного управления, электрическое присоединение и присоединение к арматуре.

Блок управления в данную комплектацию не входит, поэтому команды управления и сигналы обратной связи обрабатываются с помощью внешних средств управления, оснащенных пускателями и платой логики.

Как правило, приводы оснащаются блоком управления AMExC или ACExC. Благодаря модульному принципу конструкции, блок управления подсоединяется к приводу с помощью обычного клеммного разъема.

Различия в моделях SAEx и SQEx

1a Многооборотный привод SAEx оснащен пустотелым выходным валом для выдвижного штока арматуры.

Неполнооборотный привод SQEx оснащен механическими концевыми упорами 1b, которые ограничивают угол поворота и служат для точного доведения до конечных положений в ручном режиме. Многооборотные приводы поставляются с различными углами поворота. Смотрите также страницу 77.

Электродвигатель

Специально для автоматизации арматуры разработаны трехфазные электродвигатели, однофазные электродвигатели переменного тока и электродвигатели постоянного тока с высоким пусковым крутящим моментом. Термозащита обеспечивается термовыключателями или РТС-термисторами.

Быстрая замена электродвигателей обеспечивается кулачковой муфтой и встроенным штепсельным разъемом. Подробнее смотрите на странице 80.

Блок выключателей

Определяет положение арматуры и настраивает конечные положения/величину крутящего момента для защиты арматуры от перегрузки. В зависимости от требований заказчика применяется электромеханическое или электронное исполнение блока выключателей.

За Электромеханический блок выключателей

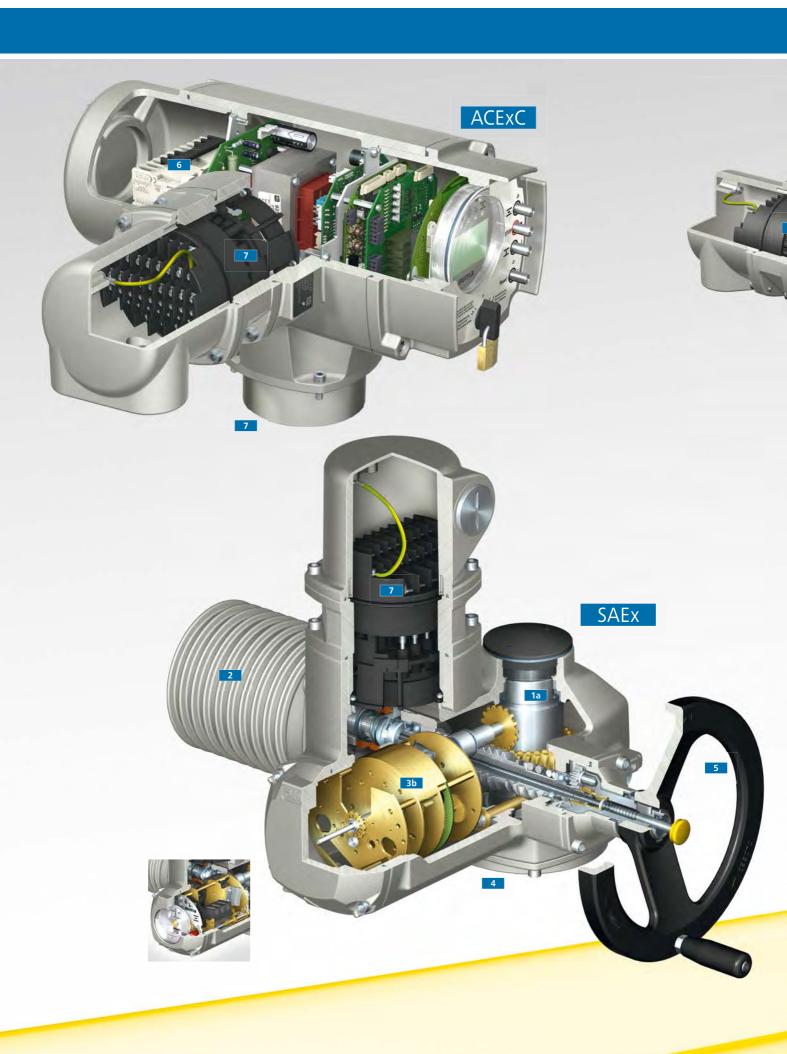
Концевые и моментные выключатели настраиваются механически; выключатели срабатывают по достижении заданного значения. Точки отключения для обоих конечных положений и моменты отключения для обоих направлений настраиваются механически.

Сигнал о положении арматуры может быть передан в диспетчерскую (опция).

Электромеханический блок выключателей применяется на электроприводах без встроенного блока управления. Он может комбинироваться с обоими типами блоков управления (AMExC и ACExC).

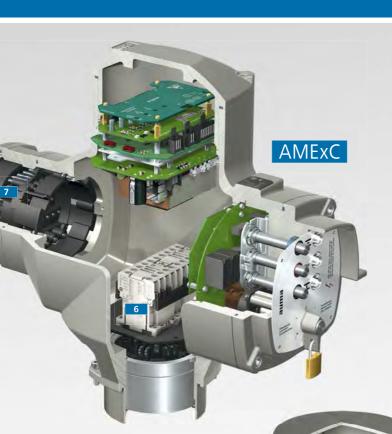
3b Электронный блок выключателей

Высокочувствительные магнитные датчики преобразуют положение арматуры и крутящий момент в электронные сигналы. Настройки конечных положений и крутящего момента производятся в блоке управления АСЕхС во время ввода в эксплуатацию. При этом открывать корпус не требуется. Информация о положении арматуры и величине крутящего момента передается в виде непрерывного сигнала.

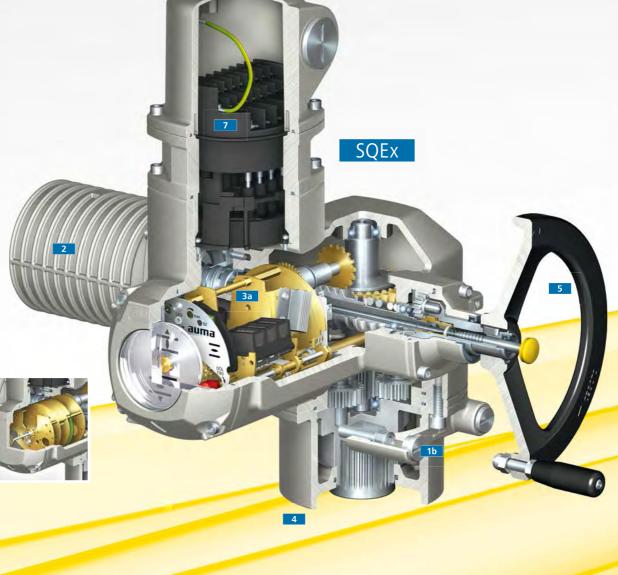

Электронный блок выключателей оснащен датчиками для считывания крутящего момента, вибраций и температуры в устройстве. Эти данные с отметкой о времени сохраняются и обрабатываются в блоке управления АСЕхС и применяются для создания графика профилактического технического обслуживания (см.также стр. 28).

Подробнее смотрите на страницах 53 и 78.

Присоединение к арматуре


Стандарты EN ISO 5210 или DIN 3210 для многооборотных приводов SAEx. Стандарт EN ISO 5211 для неполнооборотных приводов SQEx. Соединительная втулка поставляется в различных исполнениях.

Смотрите также страницу 54.


5 Ручной маховик

Ручной маховик для аварийного управления в случае отключения питания. Активация ручного управления и управление маховиком не требуют значительных усилий. Эффект самоблокировки сохраняется даже во время ручного управления.

Опции:

- > Сигнал об активации ручного управления передается на блок управления с помощью микровыключателя.
- > Устройство блокировки для защиты от несанкционированного использования
- > Удлинение ручного маховика
- > Переходник для подсоединения вспомогательного винтоверта
- > Зубчатое колесо с дистанционным переключением

Смотрите также страницу 62.

Встроенный блок управления

Электроприводами со встроенными блоками управления АМЕхС или АСЕхС можно управлять через панель местного управления сразу после подачи питания. Блок управления включает в себя пусковую аппаратуру, блок питания и интерфейс подключения к РСУ. Он обрабатывает команды управления и сигналы обратной связи привода.

Электрическое соединение между встроенным блоком управления и приводом осуществляется с помощью клеммного разъема.

Подробнее о блоках управления смотрите со страниц 22 и 82.

AMExC

Данные средства управления позволяют обрабатывать сигналы от концевых и моментных выключателей, а также команды управления ОТКРЫТЬ, СТОП, ЗАКРЫТЬ. Три индикатора на панели местного управления указывают на статус привода.

ACExC

Управление на основе микропроцессора с универсальной функциональностью и конфигурируемым интерфейсом. Состояние привода отображается на многоязычном (более 30 языков) графическом дисплее. При наличии электронного блока выключателей 3b все настройки осуществляются без открытия корпуса привода. Программирование через меню осуществляется либо непосредственно на самом устройстве, либо с помощью беспроводного соединения Bluetooth в комбинации с программой AUMA CDT.

Блок управления ACExC идеально подходит для интеграции приводов в сложные системы PCУ. Система управления оборудованием также поддерживается.

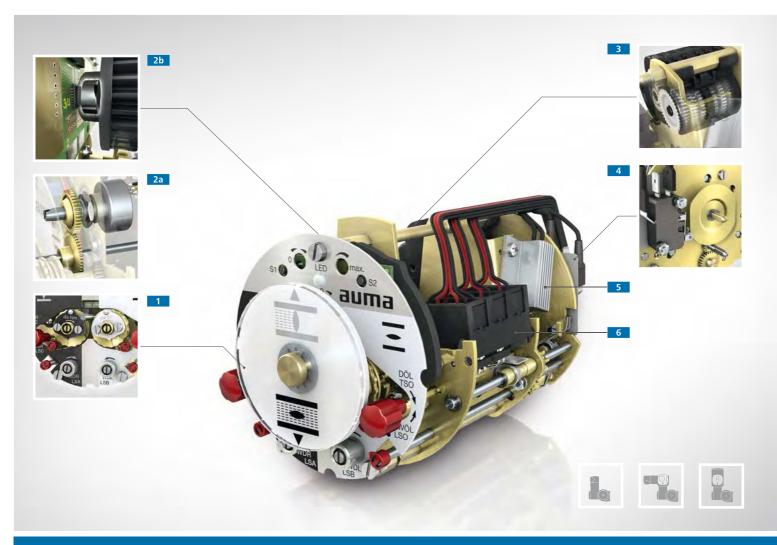
В блок ACExC встроен датчик постоянного контроля температуры, который обеспечивает функцию профилактического техобслуживания.

Пусковая аппаратура

В стандартном исполнении реверсивные пускатели используются для включения и отключения электродвигателя. Если регулирующие приводы осуществляют большое количество переключений, рекомендуется исполь-

зовать не подверженные износу тиристорные блоки (см. также стр. 82).

Скорость приводов с типоразмером от SAEx 25.1 не позволяет подключать пусковые блоки непосредственно к блоку управления, поэтому они монтируются в отдельном распределительном шкафу.


Электрический разъем

Один и тот же принцип для всех конфигураций вне зависимости от наличия блока управления. Для осуществления технического обслуживания нет необходимости отсоединять провода:

электрические разъемы легко снимаются и подключаются вновь.

Все это позволяет экономить время и избегать возможных ошибок при повторном подключении. (см. также стр. 56 и 81).

Все электрические разъемы снабжены двойным уплотнением. Для доступа к присоединительным клеммам корпус устройств открывать не требуется, поэтому их характеристики взрывозащиты не нарушаются.

ЭЛЕКТРОМЕХАНИЧЕСКИЙ БЛОК ВЫКЛЮЧАТЕЛЕЙ

В блоке выключателей имеются датчики для автоматического отключения привода в конечных положениях. В этом исполнении регистрация конечного положения и крутящего момента осуществляется механически.

Настройка концевых и моментных выключателей

Для доступа к элементам настройки требуется снять крышку корпуса и механический индикатор положения (см. также стр. 78).

2 Дистанционный датчик положения

Положение арматуры передается на PCУ с помощью потенциометра 2a или сигнала 4 — 20 мА (EWG, RWG) (см. также стр. 79). Бесконтактный датчик EWG 2b практически не изнашивается.

Согласующий редуктор

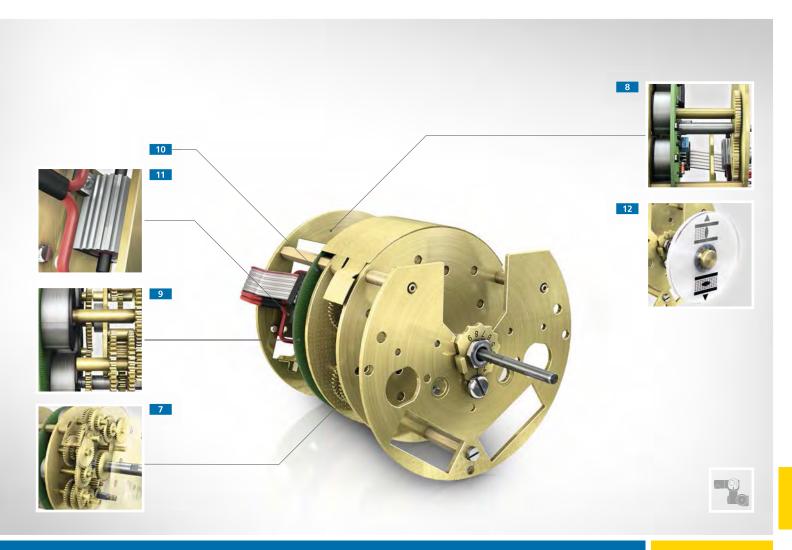
Согласующий редуктор необходим для того, чтобы ограничить ход штока арматуры в пределах диапазона регистрации дистанционного датчика положения и механического индикатора положения.

Блинкер для индикации работы

При любом вращении вала кулачок срабатывает и нажимает мигающий датчик, тем самым показывая, что электропривод движется (см. также стр. 78).

5 Обогреватель

Обогреватель предотвращает образование конденсата в блоке выключателей (см. также стр. 80).


6 Концевые и моментные выключатели

По достижении конечного положения или при превышении момента отключения срабатывает соответствующий выключатель.

В базовом исполнении предусмотрены по одному концевому выключателю для конечных положений ОТКРЫТО и ЗАКРЫТО и моментный выключатель для направлений ОТКРЫТЬ и ЗАКРЫТЬ (см. также стр. 78). Для подведения двух различных потенциалов необходимо использовать сдвоенные гальванически изолированные выключатели.

Отключение в промежуточном положении

В качестве опции можно использовать блок с промежуточными выключателями для каждого направления с целью настройки точки отключения в промежуточном положении.

ЭЛЕКТРОННЫЙ БЛОК ВЫКЛЮЧАТЕЛЕЙ

Исполнение Non-Intrusive - при наличии электронного блока выключателей (MWG) и встроенного блока управления АСЕхС все настройки привода осуществляются без вспомогательных инструментов и без необходимости открывать корпус.

Абсолютный датчик положения

Положение магнитов четырех ступеней редуктора соответствует положению арматуры. Этот способ контролирует положение арматуры даже при потере питания. Резервное питание батареями не требуется.

8 Абсолютный датчик крутящего момента

Положение магнита соответствует крутящему моменту на фланце арматуры.

Электронное определение положения и крутящего момента

Датчики Холла непрерывно считывают положение магнитов для пути и крутящего момента, которые записываются соответствующими датчиками. Электроника генерирует непрерывный сигнал положения и момента. Реализация данной функции на магнитах не подвержена влиянию помех.

Настройки конечных положений и момента сохраняются в электронном блоке выключателей. При замене блока управления ACExC эти настройки сохраняются.

10 Датчики вибрации и температуры

На плате электроники имеются датчик вибрации и датчик температуры. Полученные данные анализируются встроенной системой диагностики.

111 Обогреватель

Обогреватель предотвращает образование конденсата в блоке выключателей (см. также стр. 80).

12 Механический указатель положения

Указательный диск (опция) отображает положение арматуры, в том числе при ручном управлении (при отключенном питании).

Переключатель для исполнения SIL (на рисунке не показано)

Если привод в исполнении SIL (см. стр. 72) оснащен электронным блоком выключателей, то в этом блоке дополнительно устанавливаются концевые выключатели.

В случае срабатывания функции безопасности посредством данного выключателя в конечном положении происходит отключение двигателя.

ПРИСОЕДИНЕНИЕ К АРМАТУРЕ

Механический интерфейс присоединения к арматуре обеспечивается стандартными средствами. На многооборотных приводах размеры фланцев и втулок соответствуют стандартам EN ISO 5210 или DIN 3210.

Фланец и пустотелый вал

Пустотелый вал передает крутящий момент на втулку через внутреннее зацепление. В соответствии с нормативами присоединение к арматуре снабжено центрирующим выступом.

Выходная втулка со шлицами

Данное присоединение применяется со всеми типами втулок. Для втулок **B1, B2, B3 и B4** шлицевое присоединение имеет соответствующий выход. При использовании описанных ниже втулок выходная муфта применяется в качестве соединительного элемента.

1 Втулка А

Резьбовая втулка для выдвижного невращающегося штока. Монтажный фланец вместе с резьбовой втулкой и упорным подшипником образуют блок для принятия осевой нагрузки.

1c Втулки IB

Встроенные элементы HGW электрически изолируют приводы от арматуры. Применяется для трубопроводов с катодной антикоррозионной защитой. Крутящий момент передается на арматуру через указанную ниже 12 выходную втулку.

1d Втулка AF

В отличие от втулки типа А резьбовая втулка на валу АF дополнительно подпружинена. Пружины компенсируют динамическую осевую нагрузку на высоких скоростях, а также компенсируют тепловое расширение штока арматуры.

Втулка АК (на рисунке не показано)

Как втулка A с маятниковой резьбовой втулкой для коррекции отклонений штока арматуры. По размерам и форме соответствует втулке AF.

Устройство блокировки обратного хода LMS

Используется в том случае, если необходима функция самоблокировки, например, для высокоскоростных приводов. Устройство блокировки обратного хода предотвращает любое смещение арматуры в случае воздействия внешних сил на исполнительный элемент. Данное устройство устанавливается между приводом и арматурой.

Присоединение к арматуре неполнооборотных приводов соответствует стандарту EN ISO 5211. Подобно выходной втулке для многооборотных приводов SAEx, для передачи крутящего момента на приводах SQEx применяется втулка со шлицами.

Фланец и выходной вал

Вал передает крутящий момент на втулку через внутреннее зацепление. Фланец может оснащаться вставным центрирующим кольцом в соответствии с EN ISO 5211.

За Необработанная втулка

Стандартное исполнение. Окончательная обработка осуществляется изготовителем арматуры или на месте эксплуатации.

3b Внутренний квадрат

Стандарт EN ISO 5211 или специальные размеры на заказ.

зс С двумя фасками

Стандарт EN ISO 5211 или специальные размеры на заказ.

3d Отверстие с пазом

Отверстие по стандарту EN ISO 5211 может включать в себя один, два, три или четыре паза. Пазы соответствуют DIN 6885 T1. Имеется возможность заказать специальные размеры пазов.

Удлиненная втулка (рисунка нет)

Для специальной арматуры, например, при утопленном штоке, или если между редуктором и арматурой необходим промежуточный фланец.

ЭЛЕКТРИЧЕСКОЕ ПОДКЛЮЧЕНИЕ

Электрический разъем является неотъемлемой частью модульной конструкции и представляет собой отдельный блок. Различные виды разъемов совместимы со всеми типоразмерами и используются для приводов как с блоками управления, так и без них.

Для осуществления технического обслуживания нет необходимости отсоединять провода; электрические разъемы легко снимаются и подключаются вновь, что позволяет сэкономить время и избежать возможных ошибок при повторном подключении.

Электрический разъем КР/КРН

38-контактный штекер КР состоит из штекерной части и гнезда во взрывозащищенном корпусе. Подключение проводников осуществляется с помощью резьбовых клемм, для доступа к которым требуется только открыть крышку разъема. Корпус устройства открывать не требуется (двойное уплотнение). Резьбовые клеммы имеют тип защиты «повышенная безопасность». Таким образом, доступ к разъемам не нарушает взрывозащиту. Для проведения более полного техобслуживания можно снять электрический разъем целиком.

Крышка электрического разъема КР

Включает три кабельных ввода.

Крышка электрического разъема КРН

Включает дополнительный кабельный ввод; на 75 % больше стандартного.

Если в устройстве применяется большое количество присоединительных клемм, или передача данных осуществляется через оптоволоконный кабель, или если необходим электрический разъем в огнеупорном исполнении, тогда используется разъем КЕS. Как и другие соединения, блок KES является штепсельным.

4 Электрический разъем KES

Штепсельный разъем KES представляет собой отдельный блок, который подключается к устройству через 50-контактный штепсельный разъем (здесь: блок управления электроприводом ACExC). Штепсельный разъем заключен в литой корпус, образующий взрывозащищенную оболочку для внутреннего отсека устройства.

В корпусе монтируется необходимое количество клемм. В зависимости от исполнения крышки электрический разъем отвечает требованиям типа защиты «Повышенная безопасность» 51 или «Взрывозащищенная оболочка» 55.

6 Оптоволоконный модуль

Для непосредственного подключения оптоволоконных кабелей к блоку управления ACExC. Модуль встроен в электрический разъем KES.

Соединение FISCO для шины Foundation Fieldbus

Оснащенный Foundation Fieldbus, блок управления ACExC может поставляться с искробезопасным интерфейсом (Ex ic) для зоны 2. В этом случае в блок электрического разъема устанавливаются клеммы, сертифицированные по FISCO.

КОМБИНАЦИИ ПРИВОДОВ И РЕДУКТОРОВ ДЛЯ БОЛЬШИХ КРУТЯЩИХ МОМЕНТОВ

Комбинация многооборотного привода SAEx с неполнооборотным редуктором GS представляет собой неполнооборотный привод. Такое решение обеспечивает большой выходной крутящий момент, который трубется для автоматизации шаровых и конусных кранов с большим номинальным внутренним диаметром и/или высоким давлением.

Максимальный крутящий момент таких комбинаций: 675 000 Нм. Редукторы соответствуют стандарту АТЕХ 94/9/ЕС (см. также на странице 74).

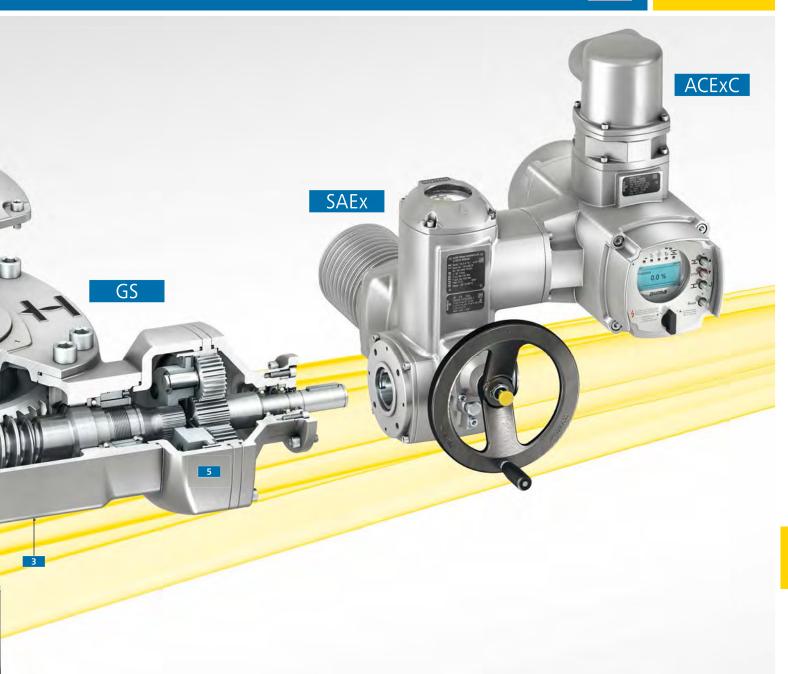
Концевые упоры

Концевые упоры ограничивают угол поворота и позволяют в ручном режиме точно доводить арматуру до конечных положений, если арматура не оснащена собственными концевыми упорами. В режиме работы от электродвигателя отключение осуществляется через многооборотный привод SAEx, а концевые упоры редуктора не задействуются.

Во время хода привода подвижная гайка 🔼 движется между двумя концевыми упорами 🕒 . Преимущества такой конструкции:

- > На концевые упоры прикладывается относительно низкий входной крутящий момент.
- > Превышение входного момента не оказывает влияния на корпус. Даже в случае разрушения концевых упоров редуктор не получает повреждений и продолжает работать.

Запатентованная конструкция из двух предохранительных косых шайб ___ предотвращает застревание подвижной гайки в обоих конечных положениях. Для расцепления требуется лишь приблизительно 60% крутящего момента, с которым редуктор был доведен до концевого упора.

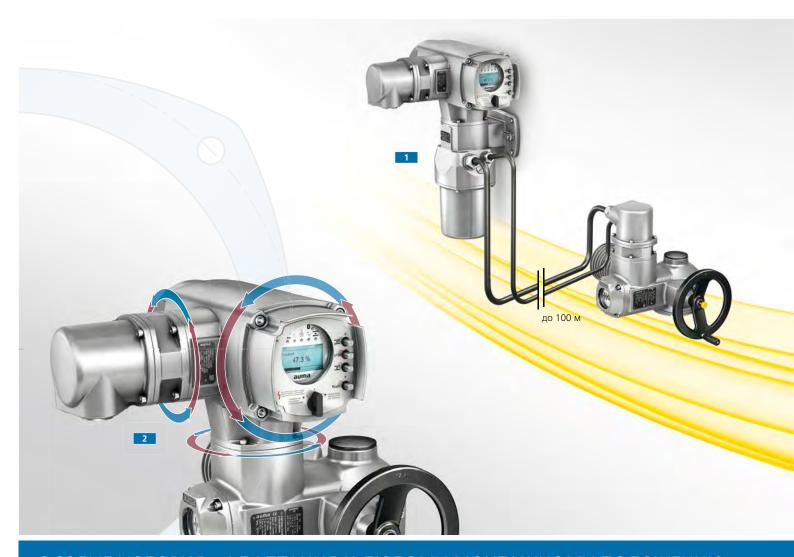


Это главные компоненты редуктора. Конструкция позволяет добиться высокого передаточного отношения за одну ступень, обеспечивая при этом эффект самоторможения, который предотвращает смещение положения арматуры вследствие внешних воздействий на исполнительный элемент арматуры.

Фланец арматуры

Соответствует стандарту EN ISO 5211.

4 Втулка


Монтаж редуктора на арматуру упрощается благодаря отдельной втулке. По желанию заказчика втулка высверливается для монтажа на шток арматуры (см. также страницу 55). Такая втулка устанавливается на шток арматуры и блокируется против осевого смещения. Затем редуктор монтируется на фланец арматуры.

5 Передаточный механизм

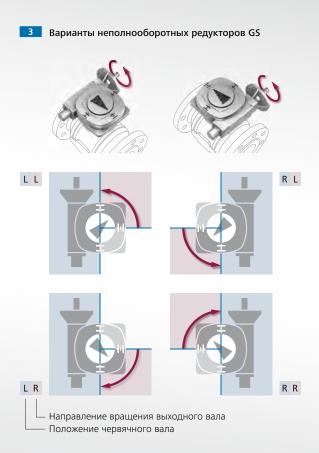
Передаточный механизм (планетарная или цилиндрическая передача) предназначен для снижения входного крутящего момента до нужного значения.

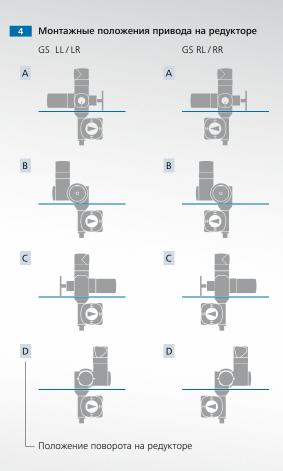
6 Крышка с указателем положения арматуры

Большая крышка с указателем положения арматуры позволяет контролировать положение арматуры с большого расстояния. Указатель также показывает ее перемещение, так как непрерывно смещается по мере движения арматуры. Если требуется высокая степень защиты, например, при подземных работах, крышка с указателем положения арматуры заменяется на защитную крышку 6а.

ОСОБЫЕ УСЛОВИЯ - АДАПТАЦИЯ К ЛЮБОМУ МОНТАЖНОМУ ПОЛОЖЕНИЮ

К преимуществам модульного принципа конструкции относится и легкая последующая адаптация устройств на месте.


Настенное крепление


В случае ограничения доступа к приводу, при чрезмерно сильных вибрациях или при слишком высоких температурах окружающей среды в месте установки блок управления необходимо смонтировать отдельно от привода на настенном креплении. Длина кабеля между приводом и блоком управления может составлять до 100 м. Настенное крепление можно в любое время модернизировать.

2 Оптимальное положение оборудования

Положение устройств можно легко подобрать и отрегулировать, что позволяет решить такие проблемы как неправильная постановка дисплея, трудности доступа к элементам управления, кабельным вводам и т.д. Система позволяет легко подобрать правильное размещение компонентов.

Имеются 4 положения с шагом 90° для размещения блока управления к приводу, панели управления на блоке управления, а также для электрического разъема к блоку управления. Благодаря съемным клеммным разъемам, монтажное положение можно просто и быстро изменить прямо на месте.

Варианты неполнооборотных редукторов GS

Четыре варианта расширяют сферу применения. Варианты отличаются размещением червячного вала относительно червячного колеса и направлением вращения выходного вала при вращающемся по часовой стрелке входном вале.

- > LL: Червячный вал слева от червячного колеса, выходной вал вращается против часовой стрелки
- > LR: Червячный вал слева от червячного колеса, выходной вал вращается по часовой стрелке
- > RL: Червячный вал справа от червячного колеса, выходной вал вращается против часовой стрелки
- > RR: Червячный вал справа от червячного колеса, выходной вал вращается по часовой стрелке

4 Монтажное положение привода на редукторе

Указанные в 2 положения не являются единственно возможными. Если привод поставляется с редуктором, то оба устройства могут быть повернуты на 90° в четырех различных монтажных положениях. Положение имеет соответствующую маркировку от А до D, и его можно определить заранее.

При необходимости монтажное положение можно изменить на месте. Это относится к многооборотным, неполнооборотным и рычажным редукторам.

На рисунке показаны монтажные положения для комбинации многооборотного привода SAEx с неполнооборотным редуктором GS. Для всех типов редукторов прилагается отдельная документация с описанием монтажных положений.

Электроприводы не всегда находятся в хорошо доступном месте. Некоторые системы эксплуатируются в особых условиях.

Здесь приводятся некоторые специальные задачи и решения для них.

- Элементы управления для ручного режима
- 1а Удлинение ручного маховика

Для отдельного монтажа маховика

1b Переходник под силовой инструмент для аварийного режима работы

Для силового инструмента в случае аварии.

1с Шахтное исполнение с переходником под силовой инструмент

Активация с помощью силового инструмента с квадратной головкой.

1d Зубчатое колесо с дистанционным переключением Активация с помощью троса, цепь в комплект не входит.

ОСОБЫЕ УСЛОВИЯ - АДАПТАЦИЯ К ЛЮБОМУ МОНТАЖНОМУ ПОЛОЖЕНИЮ

На примере показаны варианты применения указанных элементов.

2 Установка в шахте

Требования к установке зависят от возможности затопления водой и доступности элементов управления.

2а Напольный пьедестал

Червячный редуктор GS устанавливается на арматуре, а многооборотный привод доступен благодаря пьедесталу. Передача усилия между приводом и редуктором осуществляется с помощью карданного вала.

2b Шахтное исполнение с переходником под силовой инструмент

Червячный редуктор GS устанавливается на арматуре, а многооборотный привод монтируется отдельно от редуктора. Для сопряжения фланцев привода и редуктора применяется коническая зубчатая передача GK. Аварийное управление производится через крышку шахты. Для этого применяется привод в шахтном исполнении с квадратным концом под силовой инструмент. Аварийный ручной режим активируется путем нажатия на квадратную головку силового инструмента.

3 Аварийное ручное управление при затрудненном доступе

Электроприводы часто устанавливаются в труднодоступном месте. Для того чтобы облегчить подачу команд в местном режиме, блок управления электроприводом с панелью местного управления может монтироваться отдельно от привода на настенном креплении 3 в удобном месте (см. также на странице 60).

На иллюстрациях **3b** и **3c** показано аварийное управление с помощьюудлинителя маховика или зубчатого колеса. Обеконструкции предусматривают дистанционное включение ручного режима.

Компания AUMA предлагает расширенный ассортимент оборудования по требованиям заказчика. Главная задача компании - обеспечить автоматизацию любой арматуры. Задачи, которые ставят перед нами заказчики, помогают реализовывать новые идеи, повышают квалификацию сотрудников всех отделов компании, от конструкторского отдела до сервисной службы. Мы открываем новые возможности на рынке отрасли, и, что особенно важно, предоставляем нашим клиентам качественное оборудование.

Разработчики AUMA часто решают задачу внедрения в устройства дополнительных возможностей. Базовые функции устройств при этом не изменяются. Ниже приводятся примеры таких решений.

УПРАВЛЕНИЕ МНОГОПОРТОВОЙ АРМАТУРОЙ

На нефтегазовых месторождениях многопортовая арматура сводит потоки транспортируемого материала из восьми источников. Чтобы иметь возможность проанализировать потоки отдельных источников, с помощью многопортовой арматуры любой поток можно вывести на перепуск и взять с него пробу.

Обводной исполнительный элемент может устанавливаться на арматуру каждого входа. Все восемь позиций должны быть задействованы от одной и той же команды от РСУ, что обеспечивает автоматизацию операции.

Количество входов и выходов блока управления АСЕхС соответственно увеличено, в программное обеспечение ПЗУ добавлены функции, которые бы позволяли обрабатывать дополнительные команды и подавать сигналы обратной связи. Функция управления многопортовой арматурой возможна как для параллельного интерфейса, так и для интерфейса полевой шины.

Типичной конфигурацией является комбинация многооборотного привода SAEx с неполнооборотным редуктором GS без концевых упоров.

СПЕЦИАЛЬНОЕ НАЗНАЧЕНИЕ И ФУНКЦИИ

ДВА ПРИВОДА ДЛЯ ПОДЪЕМНО-ЗАПИРАЮЩЕЙ АРМАТУРЫ

Подъемно-запирающая арматура применяется при высоких температурах, высоком давлении, а также для сред с содержанием твердого вещества. Такая арматура закрывается механическим способом в оба направления потока, а в блоке исполнительного элемента, в основном, используется кран, и часто имеется промывочные и продувочные разъемы. Такая конструкция применяется, например, в сдвоенной арматуре, спускной арматуре или для замедленного коксования.

Подъемно-запирающая арматура относится к запорной арматуре. Во время работы от одного до другого конечного положения координируются два движения. Исполнительный элемент в обоих конечных положениях расположен в опоре, из которой он должен быть сначала приподнят. После этого исполнительный элемент может переключиться из положения ОТКРЫТО в положение ЗАКРЫТО или наоборот. Особенно при транспортировке абразивных сред такой тип управления снижает износ арматуры.

На подъемно-запирающую арматуру устанавливаются два приводных блока. Комбинация многооборотного привода SAEx с многооборотным редуктором для подъемно-опускного движения и комбинация многооборотного привода SAEx с неполнооборотным редуктором для поворотного движения. Оба привода оснащаются блоком управления ACExC.

С РСУ соединен только блок управления поворотного блока (главное устройство). РСУ поддерживает связь только с одним приводом, который управляется двумя командами ОТКРЫТЬ и ЗАКРЫТЬ. Главный блок управления принимает команды и подает на станцию управления сигналы обратной связи. В главном блоке управления происходит настройка параметров подъемно-запирающих функций. Блок координирует операции Закрыть-Открыть, а также обеспечивает обмен командами и сигналами с подъемным блоком (подчиненное устройство). Оба приводных блока блокируются таким образом, чтобы каждое перемещение происходило друг за другом и никогда одновременно.

Установки замедленного коксования производят кокс из мазута. Основным элементом установки является камера высотой 40 метров, в которой происходит процесс коксования при высоких температурах. По окончании процесса для выхода кокса необходимо открыть камеру сверху и снизу. Благодаря автоматизированной специальной арматуре не требуется прибегать к затратному и опасному для персонала ручному управлению.

Задвижки с двойным штоком работают с весом до 60 тонн и требуют усилия 2 800 кН.

Такую задачу можно выполнить с помощью двух редукторов GHT, которые работают одновременно от многооборотного электропривода SAEx. В итоге достигается крутящий момент до 160 000 Нм.

Устье скважины оснащают специальным устройством для подачи нефти в трубопроводную систему. Головка скважины включает в себя дроссельный клапан, необходимый для управления потоком среды. С помощью дроссельного клапана давление в трубе регулируется таким образом, чтобы содержащиеся газы оставались растворенными в жидкости. В противном случае поток среды может иссякнуть.

Такая арматура часто устанавливается в удаленных районах, например, в пустыне, поэтому необходимо учитывать подачу электропитания.

Прямоходные приводы SDL 1 оснащаются двигателями 24 В постоянного тока с малым энергопотреблением, поэтому они могут работать от автономных систем питания на солнечных батареях. Время работы, усилие и ход настраиваются электронным образом. Регулируемая скорость позиционирования повышает точность хода и регулировки.

СПЕЦИАЛЬНОЕ НАЗНАЧЕНИЕ И ФУНКЦИИ

ЭЛЕКТРОПРИВОДЫ С ФУНКЦИЕЙ ОТКАЗОБЕЗОПАСНОСТИ

При сбое в подаче электропитания привод без вспомогательного источника энергии должен привести арматуру в заранее установленное положение. За это отвечает функция отказобезопасности.

Соответствующим блоком с функцией отказобезопасности оснащаются неполнооборотные приводы SQEx. При аварии блок полностью открывает или закрывает арматуру (в зависимости от конфигурации). В качестве источника энергии применяется пружина, которая автоматически сжимается при восстановлении электропитания. В обычном режиме пружина удерживается сжатой с помощью электромагнитов. В случае потери питания или при подаче аварийного сигнала электромагниты срабатывает пружину, и функция отказобезопасности срабатывает.

Регулируемая скорость позиционирования для аварийного хода

Функция отказобезопасности приводит арматуру в аварийное положение не с максимальной, а с надлежащей скоростью. Это необходимо для предотвращения гидроудара в трубопроводе. Время работы настраивается при вводе в эксплуатации.

1 Встроенная пружина

В случае аварии привод работает от пружины.

Планетарная передача

Работает как циклический редуктор. В обычном режиме передает движение привода SQEx непосредственно на арматуру. В аварийном режиме преобразует энергию пружины в поворот на 90°.

3 Электромагнит с коленчатым рычагом

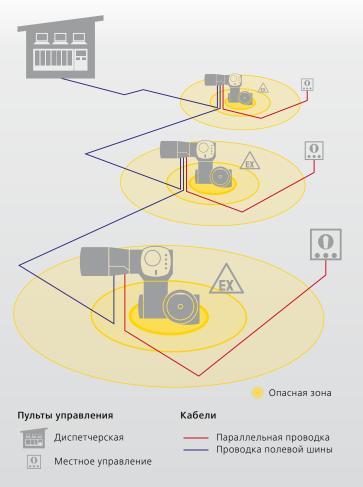
При обесточивании электромагнита его удерживающая сила исчезает и функция отказобезопасности активируется.

ПАРАЛЛЕЛЬНЫЙ ИНТЕРФЕЙС И ИНТЕРФЕЙС ПОЛЕВОЙ ШИНЫ НА ПРИВОДЕ

Одним из способом повысить надежность установки является управление полевыми устройствами через интерфейс шины или через параллельный интерфейс. В обычном режиме связь с центральной станцией происходит по полевой шине. Во время техобслуживания и при сбоях отдельные узлы установки управляются от децентрализованных шкафов управления через параллельную передачу сигналов.

Компании AUMA удалось в блоке управления ACExC совместить интерфейс полевой шины и параллельный интерфейс. При вводе в эксплуатацию оператор устанавливает приоритетный пульт управления. Кроме того, с помощью дополнительного входного сигнала оба пульта управления можно привязать друг к другу. Сигналы обратной связи от привода подаются на оба пульта управления.

КОНЦЕПЦИИ БЕЗОПАСНОСТИ С ДОПОЛНИТЕЛЬНЫМИ УРОВНЯМИ УПРАВЛЕНИЯ


Вероятность несчастного случая снижается, если ограничить время нахождения людей в потенциально взрывоопасной зоне.

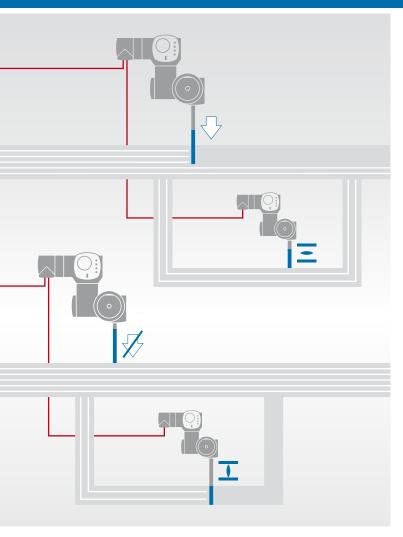
Этого можно добиться, установив в прямой видимости полевых устройств дополнительный пульт управления, чтобы создать дистанцию между опасной зоной и оператором.

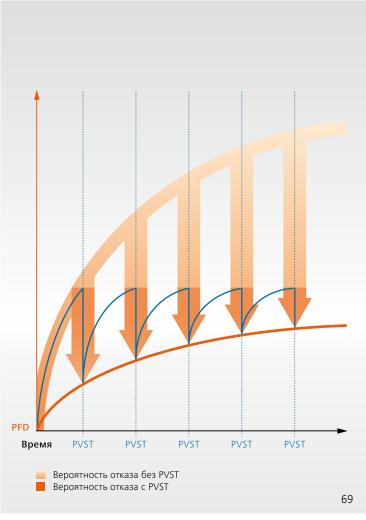
Блок управления ACExC оснащен входами, через которые можно соединить дополнительный пульт и привод, поэтому прокладывать соединения с PCУ не требуется. При настройке блока ACExC устанавливается приоритет пультов управления в системе безопасности. Блок управления обрабатывает исполнительные команды и формирует необходимые сигналы обратной связи.

СПЕЦИАЛЬНОЕ НАЗНАЧЕНИЕ И ФУНКЦИИ

Арматура оснащается функцией байпаса, чтобы при высокой разнице давления снизить гидравлический удар в трубопроводе, возникающий при закрывании арматуры. Согласно общему правилу, главная арматура может быть задействована только после полного открытия арматуры байпаса.

Два электропривода с блоком ACExC и системой управления байпасом контролируют выполнение данного правила. Привод главной арматуры напрямую соединен с приводом арматуры байпаса.


В обычном режиме система управления байпасом работает сопряженно. Команда управления на главную арматуру исполняется только после открытия байпаса, в противном случае подается сигнал о сбое. В аварийном режиме приводы координируют свой ход автоматически.


Сопряженная работа сохраняется и при управлении приводом через панель местного управления.

Во время теста частичного хода клапана (PVST) на привод подается короткий импульс управления. Система контроля времени хода и положения проверяет характер перемещения исполнительного элемента из рабочего положения. Регулярное проведение теста повышает надежность работы, в частности, автоматизированной арматуры с малым количеством срабатываний.

Тест частичного хода клапана является известным методом снижения вероятности отказа функции безопасности (PFD). Профилактическая диагностика позволяет исключить опасные сбои, поэтому вероятность отказов снижается. Данная операция важна для системы функциональной безопасности SIL (смотрите на странице 72).

Блок ACExC со встроенной функцией PVST выполняет тест самостоятельно. В случае сбоя в диспетчерскую подается соотвтствующее предупреждение.

ЗАЩИТА АРМАТУРЫ ВО ВРЕМЯ РАБОТЫ

Электроприводы AUMA соответствуют мировым стандартам безопасности. Они оснащаются большим количеством функций для обеспечения безопасной работы и защиты арматуры.

Корректирование направления вращения

Автоматическая коррекция направления вращения при неправильной последовательности фаз является неотъемлемой функцией блоков управления. Если фазы были перепутаны при подведении трехфазного источника питания, привод продолжает двигаться в правильном направлении при получении соответствующей команды управления.

Защита арматуры от перегрузки

Блок управления отключает привод в случае превышения крутящего момента во время хода.

Защитная труба для выдвижного штока арматуры

Защитная труба защищает выдвижной шток арматуры от загрязнений и предохраняет оператора от телесных повреждений.

Электроприводы AUMA не всегда устанавливаются в помещении или на территории предприятия. Компания AUMA предлагает средства для защиты оборудования от несанкционированного доступа.

1 Блокировка маховика

Ручной маховик можно заблокировать с помощью специального запирающего устройства При необходимости можно отключить автоматическое управление (от электродвигателя), если включен ручной режим 1b.

Дистанционный отпирающий сигнал панели местного управления АСЕхС

Управление приводом через панель местного управления невозможно без подачи соответствующего сигнала из диспетчерской.

Запираемый ключ-селектор

Ключ-селектор может быть заблокирован в каждом из трех положений (МЕСТНЫЙ, ВЫКЛ, ДИСТАНЦИОННЫЙ).

4 Запираемая защитная крышка

Защищает все элементы управления от преднамеренных повреждений и несанкционированного управления.

3 Защищенное соединение Bluetooth для ACExC

Чтобы установить соединение между ноутбуком или КПК и приводом с блоком управления ACExC, необходимо ввести пароль.

Защита паролем параметров АСЕхС

Изменение параметров АС может производиться только после ввода пароля.

Все чаще, когда речь заходит о технических установках, упоминаются такие термины, как функциональная безопасность и SIL (англ. SIL - Safety Integrity Level). Особенно это связано с внедрением новых международных стандартов.

Электроприводы AUMA часто эксплуатируются в условиях повышенной безопасности, и их применение способствует бесперебойной работе технических установок. По этой причине компания AUMA также уделяет теме функциональной безопасности большое внимание.

Сертификаты

Электроприводы AUMA с блоками управления ACExC в исполнении SIL, оснащенные функциями аварийного останова и безопасной остановки, соответствуют требования SIL 3.

ФУНКЦИОНАЛЬНАЯ БЕЗОПАСНОСТЬ – SIL

Блок ACExC .2 идеально подходит для выполнения задач по регулированию, если связь обеспечивается по полевой шине, или если привод должен предоставлять диагностическую информацию для оптимизации рабочих параметров.

Чтобы повысить эти функции до классов SIL 2 и SIL 3, для ACEXC .2 компания AUMA разработала специальный модуль SIL.

Модуль SIL

Модуль SIL представляет собой дополнительную плату, которая отвечает за выполнение функций безопасности. Модуль SIL устанавливается во встроенный блок управления ACExC .2.

Если в случае аварии подается запрос на выполнение функции безопасности, стандартная логика блока ACExC .2 отключается, а функция безопасности выполняется через модуль SIL.

В модуле SIL применяются только сравнительно простые элементы (транзисторы, резисторы, конденсаторы), интенсивность отказов которых полностью изучена. Номинальные показатели безопасности соответствуют уровню SIL 2, а при наличии дублирования (1002, «один из двух») они повышаются до уровня SIL 3.

Приоритет функции безопасности

Блок управления ACExC .2 в исполнении SIL сочетает в себе две функции. Во-первых, блок выполняет стандартные функции обычного режима. Во-вторых, через встроенный модуль SIL блок отвечает за выполнение функций безопасности.

Функции безопасности всегда более приоритетны по отношению к задачам обычного режима. Таким образом, при подаче команды функции безопасности стандартная логика блока управления шунтируется.

Дополнительная информация

Подробнее о стандартах SIL смотрите в брошюре «Функциональная безопасность - SIL».

СЕРТИФИКАТЫ - МЕЖДУНАРОДНЫЕ ДОПУСКИ К ЭКСПЛУАТАЦИИ

УСЛОВИЯ ВЗРЫВОЗАЩИТЫ И ОКРУЖАЮЩЕЙ ТЕМПЕРАТУРЫ_

	Диапазон окружающей температуры		
Приводы	миним.	макс.	взрывозащита
Европа - АТЕХ			
Многооборотные приводы SAEx/SAREx 07.2 – 16.2	−60 °C	+60 °C	II 2 G Ex de IIC T4/T3; II 2 G Ex d IIC T4/T3
Многооборотные приводы SAEx/SAREx 07.2 – 16.2 с AMEXC или ACEXC	−60 °C	+60 °C	II 2 G Ex de IIC T4/T3; II 2 G Ex d IIC T4/T3
Многооборотные приводы SAExC/SARExC 07.1 – 16.1	−20 °C	+80 °C	II 2 G Ex de IIB T3
Многооборотные приводы SAExC/SARExC 07.1 – 16.1 с AMExC или ACExC	−20 ° C	+70 °C	II 2 G Ex de IIB T3
Многооборотные приводы SAEx/SAREx 25.1 – 40.1	−50 °C	+60 °C	II 2 G Ex ed IIB T4
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2	−60 °C	+60 °C	II 2 G Ex de IIC T4/T3; II 2 G Ex d IIC T4/T3
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2 с AMExC или ACExC	−60 °C	+60 °C	II 2 G Ex de IIC T4/T3; II 2 G Ex d IIC T4/T3
Серии редукторов GS, GST, GK, LE, GHT, GF	−60 °C	+80 °C	II 2 G c IIC T4/T3
Международный/Австралия - IECEx			
Многооборотные приводы SAEx/SAREx 07.2 – 16.2	−60 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Многооборотные приводы SAEx/SAREx 07.2 – 16.2 с АМЕхС или ACExC	−60 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Многооборотные приводы SAExC/SARExC 07.1 – 16.1	−20 °C	+80 °C	Ex de IIB T3 Gb
Многооборотные приводы SAExC/SARExC 07.1 – 16.1 с AMExC или ACExC	−20 ° C	+70 °C	Ex de IIB T3 Gb
Многооборотные приводы SAEx/SAREx 25.1 – 40.1	−20 °C	+60 °C	Ex ed IIB T4 Gb
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2	−60 °C	+60 °C	Ex de IIC T4/T3 Gb; II 2 G Ex d IIC T4/T3 Gb
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2 с АМЕхС или ACExC	−60 °C	+60 °C	Ex de IIC T4/T3 Gb; II 2 G Ex d IIC T4/T3 Gb
США - FM			
Многооборотные приводы SAEx/SAREx 07.2 – 16.2	−40 °C	+60 °C	Class I Div 1 Groups B, C, D T4/T3C; Class II Div 1 Groups E, F, G; Class III Div 1
	−40 °C	+80 °C	Class I Div 1 Groups C, D T3; Class II Div 1 Groups E, F, G; Class III Div 1
Многооборотные приводы SAEx/SAREx 07.2 – 16.2 c AMExC или ACExC	-40 °C	+60 °C	Class I Div 1 Groups B, C, D T4/T3C; Class II Div 1 Groups E, F, G; Class III Div 1
	-40 °C	+70 °C	Class I Div 1 Groups C, D T3; Class II Div 1 Groups E, F, G; Class III Div 1
Многооборотные приводы SAEx/SAREx 25.1 – 30.1	−40 °C	+60 °C	Class I Div 1 Groups B, C, D T4/T3C; Class II Div 1 Groups E, F, G; Class III Div 1
Многооборотные приводы SAEx/SAREx 25.1 – 30.1 c AMExC или ACExC	-40 °C	+60 °C	Class I Div 1 Groups B, C, D T4/T3C; Class II Div 1 Groups E, F, G; Class III Div 1
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2	-40 °C	+60 °C	Class I Div 1 Groups B, C, D T4/T3C; Class II Div 1 Groups E, F, G; Class III Div 1
	-40 °C	+80 °C	Class I Div 1 Groups C, D T3; Class II Div 1 Groups E, F, G; Class III Div 1
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2 с AMExC или ACExC	−40 °C	+60 °C	Class I Div 1 Groups B, C, D T4/T3C; Class II Div 1 Groups E, F, G; Class III Div 1
	−40 °C	+70 °C	Class I Div 1 Groups C, D T3; Class II Div 1 Groups E, F, G; Class III Div 1
Россия - РОСТЕХНАДЗОР/Таможенный союз			
Многооборотные приводы SAEx/SAREx 07.2 – 16.2	−60 °C	+60 °C	1ExdelICT4/T3; 1ExdIICT4/T3
Многооборотные приводы SAEx/SAREx 07.2 – 16.2 с AMExC или ACExC	−60 °C	+60 °C	1ExdellCT4/T3; 1ExdllCT4/T3
Многооборотные приводы SAEx/SAREx 25.1 – 40.1	−60 °C	+60 °C	1ExedIIBT4/T3
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2	−60 °C	+60 °C	1ExdellCT4/T3; 1ExdllCT4/T3
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2 с AMExC или ACExC	−60 °C	+60 °C	1ExdellCT4/T3; 1ExdllCT4/T3

	Диапазон окружающей температурыbereich		
Приводы	миним.	макс.	взрывозащита
Канада - CSA			
Многооборотные приводы SAEx/SAREx 07.2 – 16.2	−40 °C	+60 °C	Class I Div 1 Groups B, C, D T4/T3C; Class II Div 1 Groups E, F, G; Class III Div 1
	−40 °C	+80 °C	Class I Div 1 Groups C, D T3; Class II Div 1 Groups E, F, G; Class III Div 1
	−60 °C	+60 °C	Class I Zone 1 Ex de IIC T4/T3; Ex d IIC T4/T3
Многооборотные приводы SAEx/SAREx 07.2 – 16.2 с AMExC или ACExC	−40 °C	+60 °C	Class I Div 1 Groups B, C, D T4/T3C; Class II Div 1 Groups E, F, G; Class III Div 1
	−40 °C	+70 °C	Class I Div 1 Groups C, D T3; Class II Div 1 Groups E, F, G; Class III Div 1
	−60 °C	+60 °C	Class I Zone 1 Ex de IIC T4/T3; Ex d IIC T4/T3
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2	−40 °C	+60 °C	Class I Div 1 Groups B, C, D T4/T3C; Class II Div 1 Groups E, F, G; Class III Div 1
	−40 °C	+80 °C	Class I Div 1 Groups C, D T3; Class II Div 1 Groups E, F, G; Class III Div 1
	−60 °C	+60 °C	Class I Zone 1 Ex de IIC T4/T3; Ex d IIC T4/T3
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2 с АМЕхС или АСЕхС	−40 °C	+60 °C	Class I Div 1 Groups B, C, D T4/T3C; Class II Div 1 Groups E, F, G; Class III Div 1
	−40 °C	+70 °C	Class I Div 1 Groups C, D T3; Class II Div 1 Groups E, F, G; Class III Div 1
	−60 °C	+60 °C	Class I Zone 1 Ex de IIC T4/T3; Ex d IIC T4/T3
Китай - NEPSI			
Многооборотные приводы SAEx/SAREx 07.2 – 16.2	−20 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Многооборотные приводы SAEx/SAREx 07.2 – 16.2 с АМЕХС или ACEXC	−20 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Неполнооборотные приводы SGExC 05.1 – 12.1	−50 °C	+60 °C	Ex de IIC T4; Ex d IIC T4
Неполнооборотные приводы SGExC 05.1 – 12.1 с АМЕXC или ACExC	−50 °C	+60 °C	Ex de IIC T4; Ex d IIC T4
Бразилия - INMETRO			
Многооборотные приводы SAEx/SAREx 07.2 – 16.2	−20 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Многооборотные приводы SAEx/SAREx 07.2 – 16.2 с АМЕХС или ACEXC	−20 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2	−20 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2 с АМЕхС или ACExC	−20 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Южная Корея - КОЅНА			
Многооборотные приводы SAEx/SAREx 07.2 – 16.2	−20 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Многооборотные приводы SAEx/SAREx 07.2 – 16.2 с АМЕХС или ACExC	−20 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Неполнооборотные приводы SQEx 05.2 – 14.2	−20 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Неполнооборотные приводы SQEx/SQREx 05.2 – 14.2 с АМЕхС или ACExC	−20 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3 Gb
Индия - C.E.E.			
Многооборотные приводы SAEx/SAREx 07.2 – 16.2	−60 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3
Многооборотные приводы SAEx/SAREx 07.2 – 16.2 с АМЕХС или ACEXC	−60 °C	+60 °C	Ex de IIC T4/T3 Gb; Ex d IIC T4/T3

Примечание

- > Характеристики действительны для приводов с трехфазными двигателями. Электроприводы с двигателями переменного тока соответствуют требованиям IIB, класс I, раздел 1, группа C, D
- > Стандарт Ex d требует разъема KES в герметичном корпусе

Допуски к эксплуатации в других странах

- > TIIS, Япония
- > CNS, Тайвань
- > SABS, HOAP
- > EAC (TR-CU), Казахстан
- > EAC (TR-CU), Белоруссия

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX И НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SQEX

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX ДЛЯ РЕЖИМА ОТКРЫТЬ-ЗАКРЫТЬ

Ниже представлены характеристики приводов с трехфазными двигателями, которые эксплуатируются в режиме S2 - 15 мин/классы А и В согласно EN 15714-2. Подробнее о типах электродвигателей и режимах работах смотрите в отдельных таблицах с техническими и электричес-кими характеристиками.

Тип	Выходная скорость при 50 Гц ¹	Диапазон настроек момента отключения	Частота переключений Макс. кол-во пусков.	Фланец арматуры	
	[об/мин]	[Нм]	[1/4]	EN ISO 5210	DIN 3210
SAEx 07.2	4 - 180	10 – 30	60	F07 или F10	G0
SAEx 07.6	4 - 180	20 – 60	60	F07 или F10	G0
SAEx 10.2	4 - 180	40 – 120	60	F10	G0
SAEx 14.2	4 - 180	100 – 250	60	F14	G1/2
SAEx 14.6	4 - 180	200 – 500	60	F14	G1/2
SAEx 16.2	4 - 180	400 – 1 000	60	F16	G3
SAEx 25.1	4 - 90	630 – 2 000	40	F25	G4
SAEx 30.1	4 – 90	1 250 – 4 000	40	F30	G5
SAEx 35.1	4 – 45	2 500 - 8 000	30	F35	G6
SAEx 40.1	4 – 32	5 000 – 16 000	20	F40	G7

МНОГООБОРОТНЫЕ ПРИВОДЫ SAREX ДЛЯ РЕЖИМА РЕГУЛИРОВАНИЯ

Ниже представлены характеристики приводов с трехфазными двигателями, которые эксплуатируются в режиме S4 - 25 %/ класс С согласно EN 15714-2. Подробнее о типах электродвигателей и режимах работах смотрите в отдельных таблицах с техническими и электрическими характеристиками.

Тип		Диапазон настроек момента отключения	Максимальный крутящий момент для режима регулирования	Частота переключений Макс. кол-во пусков.²	Фланец арматуры	
	[об/мин]	[Нм]	[Нм]	[1/4]	EN ISO 5210	DIN 3210
SAREX 07.2	4 – 90	15 – 30	15	1 200	F07 или F10	G0
SAREX 07.6	4 – 90	30 - 60	30	1 200	F07 или F10	G0
SAREX 10.2	4 – 90	60 - 120	60	1 000	F10	G0
SAREx 14.2	4 – 90	120 – 250	120	900	F14	G1/2
SAREx 14.6	4 – 90	250 – 500	200	900	F14	G1/2
SAREx 16.2	4 – 90	500 – 1 000	400	600	F16	G3
SAREX 25.1	4 - 11	1 000 – 2 000	800	300	F25	G4
SAREx 30.1	4 – 11	2 000 - 4 000	1 600	300	F30	G5

НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SQEX ДЛЯ РЕЖИМА ОТКРЫТЬ-ЗАКРЫТЬ ___

Ниже представлены характеристики приводов с трехфазными двигателями, которые эксплуатируются в режиме S2 - 15 мин/классы A и B согласно EN 15714-2. Подробнее о типах электродвигателей и режимах работах смотрите в отдельных таблицах с техническими и электрическими характеристиками.

Тип	Время работы при 50 Гц ¹	Диапазон настроек момента отключения	Частота переключений Макс. кол-во пусков.	Фланец арматуры	
	[сек]	[Нм]	[об/ч]	Стандарт EN ISO 5211	Опция EN ISO 5211
SQEx 05.2	4 - 32	50 – 150	60	F05/F07	F07, F10
SQEx 07.2	4 – 32	100 – 300	60	F05/F07	F07, F10
SQEx 10.2	8 - 63	200 – 600	60	F10	F12
SQEx 12.2	16 – 63	400 – 1 200	60	F12	F10, F14, F16
SQEx 14.2	24 - 100	800 – 2 400	60	F14	F16

НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SQREX ДЛЯ РЕЖИМА РЕГУЛИРОВАНИЯ

Ниже представлены характеристики приводов с трехфазными двигателями, которые эксплуатируются в режиме S4 - 25 %/ класс С согласно EN 15714-2. Подробнее о типах электродвигателей и режимах работах смотрите в отдельных таблицах с техническими и электрическими характеристиками.

Тип	Время работы при 50 Гц¹	Диапазон настроек момента отключения	Максимальный крутящий момент для режима регулирования	Частота переключений Макс. кол-во пусков.	Фланец арматуры	
	[сек]	[Нм]	[Нм]	[об/ч]	Стандарт EN ISO 5211	Опция EN ISO 5211
SQREx 05.2	8 – 32	75 – 150	75	1 500	F05/F07	F07, F10
SQREx 07.2	8 – 32	150 – 300	150	1 500	F05/F07	F07, F10
SQREx 10.2	11 – 63	300 – 600	300	1 500	F10	F12
SQREx 12.2	16 – 63	600 – 1 200	600	1500	F12	F10, F14, F16
SQREx 14.2	36 – 100	1 200 – 2 400	1 200	1 500	F14	F16

ДИАПАЗОНЫ УГЛА ПОВОРОТА _____

Угол поворота плавно регулируется в указанных пределах.

	Диапазон угла поворота
Стандарт	75° – 105°
Опция	15° – 45°; 45° – 75°; 105° – 135°; 135 ° – 165°; 165° – 195°; 195° – 225°

СРОК СЛУЖБЫ МНОГООБОРОТНЫХ И НЕПОЛНООБОРОТНЫХ ПРИВОДОВ

Срок службы многооборотных и неполнооборотных приводов AUMA серий SAEx и SQEx превышает нормативы стандарта EN 15714-2. За более подробной информацией обращайтесь к производителю.

¹ фиксированное число оборотов и время хода, коэфф. 1,4

 $^{^2}$ для указанных высоких скоростей макс. количество переключений уменьшается (см. техническую документацию)

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX И НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SQEX

БЛОК ВЫКЛЮЧАТЕЛЕЙ

Настройка отключения по положению для SAEx и SAREx

Блок выключателей многооборотных приводов регистрирует количество оборотов на ход. Предлагаются два исполнения для различных диапазонов.

	Кол-во оборотов/ход	
	электромеханический блок выключателей	электронный блок выключателей
Стандарт	2 – 500	1 – 500
Опция	2 – 5 000	10 – 5 000

ЭЛЕКТРОННЫЙ БЛОК ВЫКЛЮЧАТЕЛЕЙ

Если применяется электронный блок выключателей, то данные конечных положений, настройки арматуры, крутящего момента, температуры и вибрации записываются в цифровом виде и передаются на встроенный блок управления АСЕхС. Блок АСЕхС после внутренней обработки этих сигналов подает соответствующие сигналы через интерфейс связи.

Преобразование механических значений в электронные сигналы происходит бесконтактным способом, поэтому не оказывает влияния на износ. Электронный блок выключателей необходим для настройки электропривода в режиме Non-Intrusive.

ЭЛЕКТРОМЕХАНИЧЕСКИЙ БЛОК ВЫКЛЮЧАТЕЛЕЙ

Двоичные и аналоговые сигналы электромеханического блока выключателей обрабатываются внутренней схемой при наличии встроенного блока управления AMExC или ACExC. На приводах без встроенного блока управления сигналы передаются через электрический разъем. В этом случае требуются следующие технические характеристики контактов и дистанционного датчика.

Концевые и моментные выключатели

Исполнение	Исполнение				
	Применение и описание	Тип контакта			
Одинарные выключатели	Стандарт	Один размыкающий контакт и один замыкающий контакт (1 H3 и 1 HO)			
Сдвоенные выключатели (опция)	Для подключения двух разных потенциалов. Выключатели находятся в двух разных отсеках и гальванически изолированы в общем корпусе. Один из выключателей применяется для сигнализации.	Два размыкающих контакта и два замыкающих контакта (2 H3 и 2 HO)			
Тройные выключатели (опция)	Для подключения 3 разных потенциалов. Такой выключатель состоит из одного одинарного и одного сдвоенного выключателя.	Три размыкающих контакта и три замыкающих контакта (3 Н3 и 3 НО)			

Номинальная мощность			
Посеребренные конта	кты		
U миним.	24 B ~/=		
U макс.	250 B ~/=		
I миним.	20 MA		
I макс. переменный ток	5 А при 250 В (омическая нагрузка) 3 А при 250 В (индуктивная нагрузка, $\cos \varphi = 0,6$)		
I макс. постоянный ток	0,4 А при 250 В (омическая нагрузка) 0,03 А при 250 В (индуктивная нагрузка, L/R = 3 µs) 7 А при 30 В (омическая нагрузка) 5 А при 30 В (индуктивная нагрузка, L/R = 3 µs)		

Номинальная мощность			
Позолоченные контакты (опция)			
U миним.	5 B		
U макс.	50 B		
I миним.	4 mA		
I макс.	400 мА		

Блинкер – другие особенности				
Управление	Рычаг			
Контактный элемент	Пружинное коммутирующее устройство (двойное размыкание)			

Блинкер для индикации работы

Номинальная мощность		
Посеребренные конта	КТЫ	
U миним.	10 B ~/=	
U макс.	250 B ~/=	
I макс. переменный ток	3 А при 250 В (омическая нагрузка) 2 А при 250 В (индуктивная нагрузка, $\cos \varphi \approx 0.8$)	
I макс. постоянный ток	0,25 А при 250 В (омическая нагрузка)	

Блинкер – другие особенности		
Управление	Сегментная гайка	
Контактный элемент	Щелчковый контакт	
Тип контакта	Переключающий контакт	

ЭЛЕКТРОМЕХАНИЧЕСКИЙ БЛОК ВЫКЛЮЧАТЕЛЕЙ (ПРОДОЛЖЕНИЕ)

Дистанционный датчик положения

Прецизионный потенциометр для режима ОТКРЫТЬ-ЗАКРЫТЬ			
	простой	сдвоенный	
Линейность	≤ 1 %		
Мощность	1,5 BT		
Сопротивление (Стандарт)	0,2 кОм	0,2/0,2 кОм	
Сопротивление (Опция) другие варианты на заказ	0,1 кОм, 0,5 кОм, 1,0 кОм, 2,0 кОм, 5,0 кОм	0,5/0,5 кОм, 1,0/1,0 кОм, 5,0/5,0 кОм, 0,1/5,0 кОм, 0,2/5,0 кОм	
Ток петли макс.	30 мА		
Срок службы	100 000 циклов		

Прецизионный потенциометр для режима регулирования			
	простой	сдвоенный	
Линейность	≤ 1 %		
Мощность	0,5 Вт		
Сопротивление (Опция) другие варианты на заказ	1,0 кОм или 5,0кОм	1,0/5,0 кОм или 5,0/5,0 кОм	
Макс.ток петли	0,1 мА		
Срок службы	5 миллионов циклов		

Электронный датчик положения EWG для неполнооборотных приводов SQEx и многооборотных приводов SAEx до типоразмера 16.2			
	2-проводной	3-/4-проводной	
Выходной сигнал	4 – 20 мА	0/4 - 20 MA	

Напряжение питания 24 B = (18 - 32 B)

Электронный датчик положения RWG для неполнооборотных приводов SQEx и многооборотных приводов SAEx до типоразмера 16.2		
	2	2 /4

	2-проводной	3-/4-проводной
Выходной сигнал	4 – 20 mA	0/4 – 20 мА
Напряжение питания	14 B = + (I x R_B), make. 30 B	24 B = (18 - 32 B)

Электронный датчик положения RWGEx (искробезопасный) для всех многооборотных приводов SAEx от типоразмера 25.1

всех интогособративых приводов заках от типоразинера дз.т		
	2-проводной	
Выходной сигнал	4 – 20 mA	
Напряжение питания	10 – 28,5 B =	

ВКЛЮЧЕНИЕ РУЧНОГО УПРАВЛЕНИЯ

Мощность микровыключателя для сигнализации включения маховика		
Посеребренные конта	ІКТЫ	
U миним.	12 B =	
U макс.	250 B ~	
I макс. переменный ток	3 А при 250 В (индуктивная нагрузка, $\cos \varphi = 0.8$)	
I макс. постоянный ток	3 А при 12 В (омическая нагрузка)	

Микровыключатель для сигнализации включения маховика – другие особенности		
Управление	Сегментная гайка	
Контактный элемент	Щелчковый контакт	
Тип контакта	Переключающий контакт	

виброустойчивость

В соответствии с EN 60068-2-6.

Во время пуска или сбоя в работе приводы устойчивы к вибрациям с ускорением до 2 g и частотой от 10 до 200 Гц. Однако на основе этого нельзя вычислить усталостную прочность.

Эти данные действительны для приводов SAEx и SQEx без встроенных средств управления со штепсельным разъемом AUMA (KP) и без редуктора.

При наличии блоков управления AMExC или ACExC предельное ускорение составляет 1 ${\rm g}$.

МОНТАЖНОЕ ПОЛОЖЕНИЕ

Приводы AUMA (в т.ч. с блоками управления) могут работать в любом монтажном положении.

УРОВЕНЬ ШУМА

Уровень шума электроприводов не превышает 72 дБ (А).

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX И НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SQEX

НАПРЯЖЕНИЕ ПИТАНИЯ И ЧАСТОТА

Стандартные значения напряжения питания перечислены ниже (другое напряжение по запросу). Приводы определенного типоразмера и исполнения совместимы с электродвигателями, имеющими определенное напряжение питания/частоту. Более подробная информация содержится в таблицах с электрическими характеристиками.

Трехфазный ток

Напряжение	Частота
[B]	[Гц]
220; 230; 240; 380; 400; 415; 500; 525; 660; 690	50
440; 460; 480; 575; 600	60

Переменный ток

Напряжение	Частота
[B]	[Гц]
230	50
115; 230	60

Допустимые колебания напряжения и частоты в сети

- > Стандарт для SAEx, SQEx, AMExC и ACExC Напряжение сети: $\pm 10~\%$ Частота: $\pm 5~\%$
- > Опция для ACExC Напряжение сети: –30 % при подборе привода необходимо учитывать исполнение

ЭЛЕКТРОДВИГАТЕЛЬ

Рабочие режимы в соответствии с МЭК 60034-1/EN 15714-2

Тип	Трехфазный ток	Переменный ток
SAEx 07.2 – SAEx 16.2	S2 - 15 мин, S2 - 30 мин/ Классы А, В	S2 - 15 мин¹/ Классы А,В¹
SAEx 25.1 – SAEx 40.1	S2 - 15 мин, S2 - 30 мин/ Классы А, В	-
SAREx 07.2 – SAREx 16.2	S4 – 25 %, S4 - 50 %/ Класс С	S4 – 25 %¹/ Класс С¹
SAREx 25.1 – SAREx 30.1	S4 – 25 %, S4 - 50 %/ Класс С	-
SQEx 05.2 – SQEx 14.2	S2 - 15 мин, S2 - 30 мин/ Классы А, В	S2 - 10 мин/ Классы А,В¹
SQREx 05.2 – SQREx 14.2	S4 – 25 %, S4 - 50 %/ Класс С	S4 – 20 %/ Класс С¹

При выборе режима работы определяющими являются следующие параметры: номинальное напряжение, температура окружающей среды 40 °C, средняя нагрузка при 35 % от макс. крутящего момента.

Классы изоляции электродвигателей

	Классы изоляции
Электродвигатели трехфазного тока	F, H
Электродвигатели переменного тока	F

Номинальная сила тока для защиты электродвигателя

В качестве защиты электродвигателя стандартно применяется термистор, управляемый устройством РТС. При наличии встроенного блока управления сигналы защиты электродвигателя обрабатываются внутренними средствами. Это же относится к термовыключателям, которые могут быть установлены дополнительно. Сигналы приводов без встроенных блоков управления должны обрабатываться во внешнем блоке управления.

Номинальная мощность термовыключателей			
Напряжение переменного тока (250 B~)	Номинальная сила тока I _{макс}		
$\cos \varphi = 1$	2,5 A		
$\cos \varphi = 0.6$	1,6 A		
Постоянный ток	Номинальная сила тока I _{макс}		
60 B	1 A		
42 B	1,2 A		
24 B	1,5 Вт		

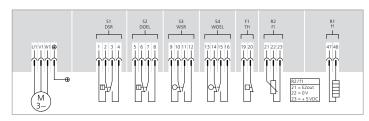
ОБОГРЕВАТЕЛЬ

Обогрев в блоке	Приводы без блока	Приводы с АМЕхС или
выключателей	управления	АСЕхС
Нагревающий	РТС-элемент	Резистивный
элемент	с саморегулировкой	обогреватель
Напряжение	110 - 250 B=/~ 24 - 48 B=/~ 380 - 400 B~	24 B=/~ (внутренний источник питания)
Мощность	5 – 20 BT	5 BT

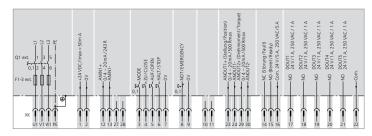
Обогреватель двигателя	Приводы без блока управления
Напряжение	110 – 120 В ~, 220 – 240 В ~ при 380 – 400 В ~ (внешний источник)
Мощность	12,5 – 50 BT ²
Мощность	,

Обогрев блока управления	AMExC	ACExC
Напряжение	110 - 120 B~, 220 - 240 B~,	380 – 400 B~
Мощность с поправкой на температуру	40 Вт	60 Вт

¹ не для всех типоразмеров


² зависит от размера электродвигателя, см. таблицы с техническими характеристиками

СХЕМЫ ПОДКЛЮЧЕНИЙ И ЭЛЕКТРИЧЕСКИЙ РАЗЪЕМ


Все схемы показывают, как кабели подключаются к штепсельному разъему. В основном, речь идет об управляющих и силовых кабелях. Схемы подключения можно загрузить из интернета на сайте

www.auma.com.

- > TPA для многооборотных приводов SAEx/SAREx и неполнооборотных приводов SQEx/SQREx
- > MSP для блоков управления AMExC
- > ТРС для блоков управления АСЕхС

ТРА пример схемы подключений электропривода

ТРС пример схемы подключений блока управления АСЕхС

Электрическое соединение КР				
	Силовые контакты	Провод заземления	Контакты управления	
Макс. кол-во контактов	3	1 (ведущий контакт)	38 контактов	
Наименование	U1, V1, W1	PE	1 – 24, 31 – 40, 47 – 50	
Макс. напряжение	550 B	-	250 B	
Макс. номинальный ток	25 A	-	10 A	
Тип подключения от клиента	Винт	Винт	Винт	
Макс. поперечное сечение	6 мм²	6 мм ²	1,5 mm ²	
Материал – изолятор	эпоксидная смола / полиамид	эпоксидная смола / полиамид	эпоксидная смола / полиамид	
Материал – контакты	латунь	латунь	латунь, покрытый оловом или позолоченный (опция)	

Электрическое соединение KES				
	Силовые контакты	Провод заземления	Контакты управления	
Макс. кол-во контактов	3	1 (ведущий контакт)	48	
Наименование	U1, V1, W1	PE	1-48	
Макс. напряжение	750 B	-	250 B	
Макс. номинальный ток	25 A	-	10 A	
Тип подключения от клиента	Винт	Винт	Зажимный разъем, дополнительное резьбовое соединение	
Макс. поперечное сечение	6 мм²/10 мм²	6 мм²/10 мм²	2,5 мм² гибкий, 4 мм² жесткий	

Размеры резьбы под кабельные вводы (по выбору)		
М-резьба (Стандарт)	1 x M20 x 1,5; 1 x M25 x 1,5; 1 x M32 x 1,5	
Рд-резьба (Опция)	1 x Pg 13,5; 1 x Pg 21; 1 x Pg 29	
NPT-резьба (Опция)	2 x ¾" NPT; 1 x 1¼" NPT	
G-резьба (Опция)	2 x G ¾"; 1 x G 1¼"	

На заводе кабельные вводы закрываются заглушками. Неиспользуемые кабельные вводы необходимо закрывать заглушками соответствующего класса взрывозащиты.

БЛОКИ УПРАВЛЕНИЯ АМЕХС И АСЕХС

МЕСТНОЕ УПРАВЛЕНИЕ. ПАНЕЛЬ МЕСТНОГО УПРАВЛЕНИЯ

	AMExC	ACExC
Управление	Ключ-селектор МЕСТНЫЙ, ВЫКЛЮЧЕНО, ДИСТАНЦИОННЫЙ (фиксируется во всех положениях)	Ключ-селектор МЕСТНЫЙ, ВЫКЛЮЧЕНО, ДИСТАНЦИОННЫЙ (фиксируется во всех положениях)
	Кнопки ОТКРЫТЬ, СТОП, ЗАКРЫТЬ	Кнопки ОТКРЫТЬ, СТОП, ЗАКРЫТЬ, СБРОС
Индикация	3 лампы: Положение ЗАКРЫТО, сигнал общего сбоя, положение ОТКРЫТО	5 ламп: Положение ЗАКРЫТО, ошибка крутящего момента в направлении ЗАКРЫТЬ, сработала защита электродвигателя, ошибка крутящего момента в направлении ОТКРЫТО, положение ОТКРЫТО
	-	Графический дисплей с переключаемой белой и красной подсветкой Разрешение 200 х 100 пикселей

ПУСКОВАЯ АППАРАТУРА

На приводах с ACExC или AMExC в корпус блоков управления устанавливаются переключающие устройства (реверсивные контакторы) или отключающие все полюса тиристоры. На многооборотных приводах от типоразмера 25.1 устанавливаются соответствующие числу оборотов реверсивные контакторы класса мощности A4, которые размещаются в отдельном распредшкафу.

О классах мощности для пусковых устройств приводов без блоков питания смотрите в документации по электрическому оборудованию.

АМЕХС И АСЕХС - ПАРАЛЛЕЛЬНЫЙ ИНТЕРФЕЙС ДЛЯ РСУ

AMExC	ACExC
Входные сигналы	
Стандарт Управляющие входы +24 В=: ОТКРЫТЬ, СТОП, ЗАКРЫТЬ через оптопару, общая линия	Стандарт Управляющие входы +24 В=: ОТКРЫТЬ, СТОП, ЗАКРЫТЬ, АВАРИЙНЫЙ, через оптопару ОТКРЫТЬ, СТОП, ЗАКРЫТЬ с одной общей линией
Опция Как стандарт, с дополнительным аварийным входом	Опция Как стандарт с дополнительными входами РЕЖИМ и РАЗБЛОКИРОВКА
Опция Управляющие входы при 115 B~	Опция Управляющие входы 115 B~, 48 B=, 60 B=, 110 B=
Вспомогательное напряжение для входных сигналов	
24 B=, Makc. 50 MA	24 В=, макс. 100 мА
115 B~, makc. 30 mA	115 В~, макс. 30 мА
Управление уставкой	
	Аналоговый вход 0/4 – 20 мА
Выходные сигналы	
Стандарт 5 выходных контактов, 4 НО с общей линией, макс. 250 В~, 0,5 А (резистивная нагрузка) Базовое исполнение: Положение ЗАКРЫТО, положение ОТКРЫТО, ключ-селектор ДИСТ., ключ-селектор ДИСТ., ключ-селектор МЕСТН. 1 потенциально свободный переключающий контакт, макс. 250 В~, 5 А (резист. нагрузка) для общего сигнала ошибки: ошибка фазы, срабатывание защиты двигателя, ошибка крутящего момента	Стандарт 6 выходных контактов на параметр, любое распределение, 5 НО с общей линией, макс. 250 В~, 1 А (резистивная нагрузка), 1 потенциально свободный переключающий контакт, макс. 250 В~, 5 А (резист. нагрузка) Базовое исполнение: Базовое исполнение: положение ЗАКРЫТО, положение ОТКРЫТО, ключ-селектор в положении ДИСТАНЦИОННЫЙ, ошибка по моменту на Открытие, ошибка по моменту на Закрытие
	Опция 12 выходных контактов на параметр, любое распределение, 10 НО с общей линией, макс. 250 В~, 1 А (резистивная нагрузка), 2 потенциально свободных переключающих контакта для сигнала сбоя, макс. 250 В~, 5 А (резист. нагрузка)
	Опция Переключающие контакты без общей линии, макс. 250 В~, 5 А (резист. нагрузка)
Постоянная обратная связь по положению	
Сигнал обратной связи, 0/4 – 20 мА	Сигнал обратной связи, 0/4 – 20 мА

АСЕХС - ИНТЕРФЕЙСЫ ПОЛЕВОЙ ШИНЫ ДЛЯ РСУ ______

	Profibus	Modbus	Foundation Fieldbus	HART	Беспроводная связь
Общие	Обмен дискретными сигналами и командами управления, сигналами обратной связи, запросами состояния между приводами и РСУ, вся информация в оцифрованном виде.				
Протоколы	DP-V0, DP-V1, DP-V2	Modbus RTU	FF H1	HART	Беспроводная связь
Макс. кол-во устройств	126 (125 полевых устройств и управляющее устройство Profibus DP) без репитера; т.е. на сегмент Profibus DP макс. 32	247 полевых устройств и управляющее устройство Modbus RTU Без репитера, то есть на сегмент Modbus до 32 устройств	240 полевых устройств вкл. связующее устройство. На один сегмент Foundation Fieldbus до 32 устройств.	64 полевых устройства при использовании Multidrop	На шлюз 250
Макс. длина кабелей без репитера	Макс. 1 200 м (при скорости передачи данных < 187,5 кбит/с), 1 000 м при 187,5 кбит/с, 500 м при 500 кбит/с, 200 м при 1,5 Мбит/с,	Макс. 1 200 м	Макс. 1 900 м	Прибл. 3 000 м	Дальность действия вне помещений прибл. 200 м в помещениях прибл. 50 м
Макс. длина кабеля с репите- ром	Прибл.10 км (только для скорости передачи данных < 500 кбит/с), ок. 4 км (при 500 Мбит/с) около 2 км (при 1,5 Мбит/с) Максимальная длина кабеля зависит от типа и количества репитеров. Как правило, в системе Profibus DP применяется до 9 репитеров.	Около 10 км Максимальная длина кабеля зависит от типа и количества репитеров. Как правило, в системе Modbus применяется до 9 репитеров.	Около 9,5 км Максимальная длина кабеля зависит от количества репитеров. В системе FF можно каскадно подключать до 4 репитеров.	Возможно применение репитеров, макс. длина кабеля в соответствии со стандартной проводкой 4 – 20 мА.	Каждое устройство работает в качестве репитера. За счет последовательно расположенных устройств можно перекрывать большие расстояния.
Защита от повышения напряже- ния (опция)	До 4 кВ			_	не требуется
Передач <u>а д</u>	анных через оптоволокою	ные кабели			
Топологии	Линия, звезда, петля	Линия, звезда	-	-	-
Длина кабеля между 2-мя приводами	Многомодовое: до 2,6 км при стекловолокне 62,5 мкм		-	-	-

ВАРИАНТЫ ИНТЕГРАЦИИ В РСУ _____

Полевая шина	Производитель	РСУ	
Profibus DP	Siemens	S7-414H; Open PMC, SPPA T3000	
	ABB	Melody AC870P; Freelance 800F; Industrial IT System 800 XA	
	OMRON	CS1G-H (CS1W-PRN21)	
	Mitsubishi	Melsec Q (Q25H с управляющим интерфейсом QJ71PB92V)	
	PACTware Consortium e.V.	PACTware 4.1	
	Yokogawa	Centum VP (ALP 121 интерфейс Profibus)	
Foundation	ABB	Industrial IT System 800 XA	
Fieldbus	Emerson	Delta-V; Ovation	
	Foxboro/Invensys	I/A Series	
	Honeywell	Experion PKS R100/R300	
	Rockwell	RSFieldBus	
	Yokogawa	CS 3000	

Полевая шина	Производитель	РСУ
Modbus	Allen Bradley	SLC 500; серии 5/40; ControlLogix Controller
	Emerson	Delta-V
	Endress & Hausser	Control Care
	General Electric	GE Fanuc 90-30
	Honeywell	TDC 3000; Experion PKS; ML 200 R
	Invensys/Foxboro	I/A Series
	Rockwell	Control Logix
	Schneider Electric	Quantum Series
	Siemens	S7-341; MP 370; PLC 545-1106
	Yokogawa	CS 3000

БЛОКИ УПРАВЛЕНИЯ АМЕХС И АСЕХС

ОБЗОР ФУНКЦИОНАЛЬНЫХ ВОЗМОЖНОСТЕЙ __

	AMExC	ACExC
Рабочие функции	<u>. </u>	
Программируемый тип настройки	•	•
Автоматическая коррекция фаз	•	•
Позиционер	-	
Сигналы промежуточного положения	-	•
Дистанционная сигнализация о достижении промежуточных положений	-	
Возможности управления промежуточными положениями	-	
/величенное время работы благодаря таймеру	-	•
Настраиваемое функционирование в аварийном режиме		•
Безопасный режим при потере сигнала		•
айпас мониторинга крутящего момента	-	•
Исполнение SIL	-	
Зстроенный PID-регулятор	-	
Рункция многопортовой арматуры	-	
Тодъемно-запирающая функция	-	
1нтеграция дополнительных уровней управления	-	
Трименение байпаса	-	
ест частичного хода клапана	-	
ункции мониторинга		
ащита арматуры от перегрузки	•	•
loтеря фазы/последовательность фаз	•	•
емпература электродвигателя (предельное значение)	•	•
Mониторинг допустимого времени работы (режим работы)	-	•
учное управление активировано		
Лониторинг времени работы	-	•
еагирование на команду управления	-	•
Обнаружение движения привода	-	•
заимодействие с РСУ через цифровой интерфейс	-	
Лониторинг обрыва провода, аналоговые входы	-	•
емпература электронной части	-	•
Qиагностика через непрерывный контроль температуры и вибрации	-	•
Лониторинг работы обогревателя	-	•
Лониторинг работы датчика положения в приводе	-	•
Лониторинг работы датчика момента	-	•
Диагностика		
Этчет о событии с отметкой времени	-	•
Электронный паспорт устройства	_	•
^р егистрация рабочих данных	-	•
1нформация о крутящем моменте	_	•
Сигналы состояния в соответствии со стандартами NAMUR NE 107	_	•
екомендации по техобслуживанию: уплотнения, смазка, реверсивные контакторы, механические узлы	_	

Стандарт

П Опция

НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SAEX/GS

Неполнооборотные редукторы GS с многооборотными приводами SAEх образуют многооборотный привод. При этом номинальный крутящий момент достигает 675 000 Нм. Данная конфигурация дополняет линейку неполнооборотных приводов SOEx.

ПАРАМЕТРЫ СРОКА СЛУЖБЫ - КЛАССЫ НАГРУЗКИ В РЕЖИМЕ "ОТКРЫТЬ-ЗАКРЫТЬ"

Требования к срокам службы электропривода регламентируются стандартом EN 15714-2. Несмотря на то, что нормативы этого не требуют, компания AUMA при производстве своих редукторов учитывает значения, указанные в вышеупомянутом стандарте. Делается это из тех соображений, что редукторы AUMA часто устанавливаются в одном блоке с электроприводами AUMA. Данные параметры соответствуют Классу нагрузки 1 (см. таблицы ниже). Если требования к срокам службы ниже, то действует Класс нагрузки 2. Класс нагрузки 3 относится только к ручной арматуре, у которой количество переключений значительно ниже, по сравнению с моторизированными редукторами.

Классы нагрузки действительны только для редукторов GS. Для электроприводов действует стандарт EN 15714-2 без сопоставимой классификации.

Классы нагрузки неполнообортных редукторов AUMA

- > Класс нагрузки 1 моторизированный режим Срок службы для поворотов на 90°. Соответствует требованиям срока службы согласно стандарту EN 15714-2.
- Класс нагрузки 2 моторизированный режим
 Срок службы для поворота 90° для арматуры с малым количеством переключений.
- > Класс нагрузки 3 ручной режим Соответствует требованиям срока службы согласно стандарту EN 1074-2.

	Класс нагрузки 1	Класс нагрузки 2	Класс нагрузки 3
Тип	Количество циклов при макс. крутящем моменте	Количество циклов при макс. крутящем моменте	Количество циклов при макс. крутящем моменте
GS 50.3	10 000	1 000	250
GS 63.3			
GS 80.3	5 000		
GS 100.3			
GS 125.3	2500		
GS 160.3			
GS 200.3			
GS 250.3	1000		
GS 315		-	-
GS 400			
GS 500			
GS 630.3			

НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SAEX/GS

НЕПОЛНООБОРОТНЫЕ РЕДУКТОРЫ И ПЕРЕДАТОЧНЫЕ МЕХАНИЗМЫ - РЕЖИМ "ОТКРЫТЬ-ЗАКРЫТЬ"

Многооборотные электроприводы рекомендуются с учетом достижения максимального выходного момента. Если требованиях к крутящему моменту не являются столь высокими, допускается применение многооборотных приводов меньшего размера. Подробнее смотрите в отдельных таблицах с техническими данными.

Класс нагрузки 1 - моторизированый режим с требованиям срока службы согласно стандарту EN 15714-2.

Тип	Макс. крутящий момент арматуры	Фланец арматуры	Общее передаточ- ное число	Коэффи- циент ¹	Входной момент при макс. выходном моменте	Рекомендуемый многооборотный привод для макс. входного момента	Диапазон времени работы при 50 Гц и угле поворота 90°
	[Нм]	EN ISO 5211			[Нм]		[сек]
GS 50.3	500	F07; F10	51:1	16,7	30	SAEx 07.2	9 – 191
GS 63.3	1 000	F10; F12	51:1	16,7	60	SAEx 07.6	9 – 191
GS 80.3	2 000	F12; F14	53:1	18,2	110	SAEx 10.2	9 – 199
GS 100.3	4 000	F14; F16	52:1	18,7	214	SAEx 14.2	9 – 195
			126:1	42,8	93	SAEx 10.2	11 – 473
			160:1	54	74	SAEx 10.2	13 – 600
			208:1	70,7	57	SAEx 07.6	17 – 780
GS 125.3	8 000	F16; F25; F30	52:1	19,2	417	SAEx 14.6	9 – 195
			126:1	44	182	SAEx 14.2	11 – 473
			160:1	56	143	SAEx 14.2	13 - 600
			208:1	72,7	110	SAEx 10.2	17 - 780
GS 160.3	14 000	F25; F30; F35	54:1	21	667	SAEx 16.2	9 – 203
			218:1	76	184	SAEx 14.2	18 - 818
			442:1	155	90	SAEx 10.2	37 – 1 658
GS 200.3	28 000	F30; F35; F40	53:1	20,7	1 353	SAEx 25.1	9 – 199
			214:1	75	373	SAEx 14.6	18 - 803
			434:1	152	184	SAEx 14.2	36 – 1 628
			864:1	268	104	SAEx 10.2	72 - 1 620 ²
GS 250.3	56 000	F35; F40	52:1	20,3	2 759	SAEx 30.1	9 – 195
			210:1	74	757	SAEx 16.2	35 – 788
			411:1	144	389	SAEx 14.6	34 – 1 541
			848:1	263	213	SAEx 14.2	71 - 1 590 ²
GS 315	90 000	F40; F48	53:1	23,9	3 766	SAEx 30.1	9 – 199
			424:1	162	556	SAEx 14.6	35 – 1 590
			848:1	325	277	SAEx 14.2	71 – 1 590 ²
			1 696:1	650	138	SAEx 10.2	141 - 1 590 ²
GS 400	180 000	F48; F60	54:1	24,3	7 404	SAEx 35.1	9 – 203
			432:1	165	1 091	SAEx 16.2	69 - 1 560 ²
			864:1	331	544	SAEx 14.6	72 – 1 620 ²
			1 728:1	661	272	SAEx 14.2	144 - 1 620 ²
GS 500	360 000	F60	52:1	23,4	15 385	SAEx 40.1	9 – 195
			832:1	318	1 132	SAEx 16.2	69 - 1 560 ²
			1 664:1	636	566	SAEx 14.6	139 – 1 560 ²
			3 328:1	1 147	314	SAEx 14.2	277 – 1 560 ²
GS 630	675 000	F90/AUMA	210:1	71,9	9 395	SAEx 40.1	98 – 788
			425:1	145,5	4 640	SAEx 35.1	142 – 1 594
			848:1	261,2	2 585	SAEx 30.1	141 – 1 590 ²
			1 718:1	528,8	1 275	SAEx 25.1	286 – 1 611 ²
			3 429:1	951,2	710	SAEx 16.2	286 – 1 607 ²
			6 939:1	1 924,8	350	SAEx 16.2	578 – 1 652 ²
			0 333.1	1 324,0	330	37 LK 10.2	370 1032

Класс нагрузки 2 - моторизированный режим с малым количеством переключений

Тип	Макс. крутящий момент арматуры	Фланец арматуры	Общее передаточ- ное число	Коэффи- циент ¹	Входной момент при макс. выходном моменте	Рекомендуемый многооборотный привод для макс. входного момента	Диапазон времени работы при 50 Гц и угле поворота 90°
	[Нм]	EN ISO 5211			[Нм]		[сек]
GS 50.3	625	F07; F10	51:1	16,7	37	SAEx 07.6	9 – 191
GS 63.3	1 250	F10; F12	51:1	16,7	75	SAEx 10.2	9 – 191
GS 80.3	2 200	F12; F14	53:1	18,2	120	SAEx 10.2	9 – 199
GS 100.3	5000	F14; F16	52:1	18,7	267	SAEx 14.6	9 – 195
			126:1	42,8	117	SAEx 10.2	11 – 473
			160:1	54	93	SAEx 10.2	13 – 600
			208:1	70,7	71	SAEx 10.2	17 – 780
GS 125.3	10 000	F16; F25; F30	52:1	19,2	521	SAEx 16.2	9 – 195
			126:1	44	227	SAEx 14.2	11 – 473
			160:1	56	179	SAEx 14.2	13 – 600
			208:1	72,7	138	SAEx 14.2	17 – 780
GS 160.3	17 500	F25; F30; F35	54:1	21	833	SAEx 16.2	9 – 203
			218:1	76	230	SAEx 14.2	18 – 818
			442:1	155	113	SAEx 10.2	37 – 1 658
			880:1	276	63	SAEx 10.2	73 - 1 650 ²
GS 200.3	35 000	F30; F35; F40	53:1	21,0	1 691	SAEx 25.1	9 – 199
			214:1	75,0	467	SAEx 14.6	18 - 803
			434:1	152	230	SAEx 14.2	36 – 1 628
			864:1	268	131	SAEx 14.2	72 – 1 620 ²
			1 752:1	552	63	SAEx 10.2	146 – 1 643 ²
GS 250.3	70 000	F35; F40; F48	52:1	20,3	3 4 4 8	SAEx 30.1	9 – 195
			210:1	74,0	946	SAEx 16.2	18 – 788
			411:1	144	486	SAEx 14.6	34 – 1 541
			848:1	263	266	SAEx 14.6	71 – 1 590 ²
			1 718:1	533	131	SAEx 14.2	143 – 1 611 ²

Класс нагрузки 3 - ручной режим

Тип	Макс. крутящий момент арматуры	Фланец арматуры	Общее передаточ- ное число	Коэффи- циент	Входной момент при макс. выходном моменте
	[Нм]	EN ISO 5211			[Нм]
GS 50.3	750	F07; F10	51:1	16,7	45
GS 63.3	1500	F10; F12	51:1	16,7	90
GS 80.3	3000	F12; F14	53:1	18,2	165
GS 100.3	6000	F14; F16	52:1	18,7	321
			126:1	42,8	140
			160:1	54	111
			208:1	70,7	85
GS 125.3	12 000	F16; F25; F30	126:1	44	273
			160:1	56	214
			208:1	72,7	165
GS 160.3	17 500	F25; F30; F35	54:1	21	833
			218:1	76	230
			442:1	155	113
			880:1	276	63
GS 200.3	35 000	F30; F35; F40	434:1	152	230
			864:1	268	131
			1 752:1	552	63
GS 250.3	70 000	F35; F40; F48	848:1	263	266
			1 718:1	533	131

НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SAEX/GS

НЕПОЛНООБОРОТНЫЕ РЕДУКТОРЫ И ПЕРЕДАТОЧНЫЕ МЕХАНИЗМЫ - РЕЖИМ РЕГУЛИРОВАНИЯ

Указанные крутящие моменты действительны для режима регулирования, при котором требуется применение бронзового червячного колеса. Для других задач смотрите соответствующую документацию.

Многооборотные электроприводы рекомендуются с учетом достижения максимального выходного момента. Если требованиях к крутящему моменту не являются столь высокими, допускается применение многооборотных приводов меньшего размера. Подробнее смотрите в отдельных таблицах с техническими данными.

Тип	Макс. крутящий момент арматуры	Момент регулирова- ния	Фланец арматуры	Общее передаточное число	Коэффициент¹	Входной момент при макс. выходном моменте	Рекомендуе- мый многоо- боротный привод для макс. входного момента	Диапазон времени работы при 50 Гц и угле поворота 90°
	[Нм]	[Нм]	EN ISO 5211			[Нм]		[сек]
GS 50.3	350	125	F05; F07; F10	51:1	17,9	20	SAREx 07.2	9 – 191
GS 63.3	700	250	F10; F12	51:1	17,3	42	SAREx 07.6	9 – 191
GS 80.3	1 400	500	F12; F14	53:1	19,3	73	SAREx 10.2	9 – 199
GS 100.3	2 800	1 000	F14; F16	52:1	20,2	139	SAREx 14.2	9 – 195
				126:1	44,4	63	SAREx 10.2	21 – 473
				160:1	55,5	50	SAREx 07.6	13 – 600
				208:1	77	37	SAREX 07.6	35 – 780
GS 125.3	5 600	2 000	F16; F25	52:1	20,8	269	SAREx 14.6	9- 195
				126:1	45,4	123	SAREx 14.2	21 – 473
				160:1	57,9	97	SAREx 10.2	27 - 600
				208:1	77	73	SAREx 10.2	35 – 780
GS 160.3	11 250	4 000	F25; F30	54:1	22,7	496	SAREx 14.6	9 – 203
				218:1	83	136	SAREx 14.2	36 - 818
				442:1	167	68	SAREx 10.2	74 – 1 658
GS 200.3	22 500	8 000	F30; F35	53:1	22,3	1 009	SAREx 25.1	72 – 199
				214:1	81,3	277	SAREx 14.6	36 - 803
				434:1	165	137	SAREx 14.2	72 – 1 628
				864:1	308	73	SAREx 10.2	144 - 1 620 ²
GS 250.3	45 000	16 000	F35; F40	52:1	21,9	2 060	SAREx 30.1	71 – 195
				210:1	80	563	SAREx 16.2	35 – 788
				411:1	156	289	SAREx 14.6	69 – 1 541
				848:1	305	148	SAREx 14.2	141 - 1 590 ²
GS 315	63 000	30 000	F40; F48	53:1	26	2 432	SAREx 30.1	72 – 199
				424:1	178	354	SAREx 14.6	71 – 1 590
				848:1	356	177	SAREx 14.2	141 - 1 590 ²
				1 696:1	716	88	SAREx 10.2	283 - 1 590 ²
GS 400	125 000	35 000	F48; F60	54:1	26,5	4 717	SAREx 30.1	74 – 203
		60 000		432:1	181	691	SAREx 16.2	72 – 1 620
				864:1	363	344	SAREx 14.6	144 - 1 620 ²
				1 728:1	726	172	SAREx 14.2	288 - 1 620 ²
GS 500	250 000	35 000	F60	52:1	25,5	9 804	SAREx 30.1	71 – 195
		120 000		832:1	350	714	SAREx 16.2	139 – 1 560 ²
				1 664:1	416	358	SAREX 14.6	277 - 1 560 ²

ДИАПАЗОН УГЛА ПОВОРОТА

Как и для неполнооборотных приводов SQEx, для конфигурации SAEx/GS также имеются различные диапазоны угла поворота. Углы поворота зависят от типоразмера редуктора. Подробнее смотрите в отдельных таблицах с данными.

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX/GK

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX С МНОГООБОРОТНЫМИ РЕДУКТОРАМИ GK

Коническая зубчатая передача GK с многооборотным приводом SAEx в одном блоке образуют многооборотный привод с большим выходным крутящим моментом. Входной вал и выходной вал установлены друг к другу под прямым углом. Такая комбинация позволяет решать специальные задачи. К ним относятся, например, особые условия монтажа или одновременное задействование двух штоков двумя редукторами GK и одним центральным приводом.

В таблице ниже представлены некоторые характеристики. Подробнее о редукторах GK смотрите в отдельных справочных таблицах. Устройства с другими значениями передаточного числа поставляются на заказ.

Тип	Макс. крутящий момент арматуры	Момент регулиро- вания	Фланец арг	матуры	Переда- точное число	Коэф- фициент	Соответствующий многообо	оротный привод
	[Нм]	[Нм]	EN ISO 5211	DIN 3210			Режим Открыть-Закрыть	Режим регулирования
GK 10.2	120	60	F10	G0	1:1 2:1	0,9 1,8	SAEx 07.6; SAEx 10.2; SAEx 14.2	SAREX 07.6; SAREX 10.2; SAREX 14.2
GK 14.2	250	120	F14	G1/2	2:1 2,8:1	1,8 2,5	SAEx 10.2; SAEx 14.2	SAREX 10.2; SAREX 14.2
GK 14.6	500	200	F14	G1/2	2,8:1 4:1	2,5 3,6	SAEx 10.2; SAEx 14.2	SAREX 10.2; SAREX 14.2
GK 16.2	1 000	400	F16	G3	4:1 5,6:1	3,6 5,0	SAEx 14.2; SAEx 14.6	SAREx 14.2
GK 25.2	2 000	800	F25	G4	5,6:1 8:1	5,0 7,2	SAEx 14.2; SAEx 14.6	SAREX 14.2; SAREX 14.6
GK 30.2	4 000	1 600	F30	G5	8:1 11:1	7,2 9,9	SAEx 14.6; SAEx 16.2	SAREX 14.6; SAREX 16.2
GK 35.2	8 000	-	F35	G6	11:1 16:1	9,9 14,4	SAEx 14.6; SAEx 16.2	-
GK 40.2	16 000	-	F40	G7	16:1 22:1	14,4 19,8	SAEx 16.2; SAEx 25.1	-

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX/GST

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX С МНОГООБОРОТНЫМИ РЕДУКТОРАМИ GST

Цилиндрические редукторы GST с многооборотным приводом SAEx в одном блоке образуют многооборотный привод с повышенным выходным крутящим моментом. Входной вал и выходной вал смещены по отношению друг к другу по оси. Такая комбинация позволяет решать специальные задачи, например, при особых условиях монтажа.

В таблице ниже представлены некоторые характеристики. Подробнее о редукторах GST смотрите в отдельных справочных таблицах. Устройства с другими значениями передаточного числа поставляются на заказ.

Тип	Макс. крутящий момент арматуры	Момент регулиро- вания	Фланец арі	матуры	Переда- точное число	Коэф- фициент	Соответствующий многооб	оротный привод
	[Нм]	[Нм]	EN ISO 5211				Режим Открыть-Закрыть	Режим регулирования
GST 10.1	120	60	F10	G0	1:1	0,9	SAEx 07.6; SAEx 10.2; SAEx 14.2	
					1,4:1	1,3		SAREx 14.2
					2:1	1,8		
GST 14.1	250	120	F14	G1/2	1,4:1	1,3	SAEx 10.2; SAEx 14.2	SAREX 10.2; SAREX 14.2
					2:1	1,8		
					2,8:1	2,5		
GST 14.5	500	200	200 F14	G1/2	2:1	1,8	SAEx 10.2; SAEx 14.2	SAREX 10.2; SAREX 14.2
					2,8:1	2,5		
					4:1	3,6		
GST 16.1	1 000	400	F16	G3	2,8:1	2,5	SAEx 14.2; SAEx 14.6	SAREx 14.2
					4:1	3,6		
					5,6:1	5,0		
GST 25.1	2 000	800	F25	G4	4:1	3,6	SAEx 14.2; SAEx 14.6	SAREX 14.2; SAREX 14.6
					5,6:1	5,0		
					8:1	7,2		
GST 30.1	4 000	1 600	F30	G5	5,6:1	5,0	SAEx 14.6; SAEx 16.2	SAREX 14.6; SAREX 16.2
					8:1	7,2		
					11:1	9,9		
GST 35.1	8 000	-	F35	G6	8:1	7,2	SAEx 14.6; SAEx 16.2	-
					11:1	9,9		
					16:1	14,4		
GST 40.1	16 000	-	F40	G7	11:1	9,9	SAEx 16.2; SAEx 25.1	-
				16:1	14,4			
					22:1	19,8		

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX/GHT

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX С МНОГООБОРОТНЫМИ РЕДУКТОРАМИ GHT

Цилиндрические редукторы GHT с многооборотным приводом SAEx в одном блоке образуют многооборотный привод с большим выходным крутящим моментом. Комбинация с GHT почти в восемь раз увеличивает диапазон крутящего момента серии SAEx. Такие характеристики крутящего момента требуются, например, для больших задвижек.

В таблице ниже представлены некоторые характеристики. Подробнее о редукторах GHT смотрите в отдельных справочных таблицах. Устройства с другими значениями передаточного числа поставляются на заказ.

Тип	Макс. крутящий момент арматуры [Нм]	Фланец арматуры EN ISO 5211	Переда- точное число	Коэф- фициент	Соответствующий многооборотный привод
CUT 220.2			10.1	0	CAE _V 20.1
GHT 320.3	32 000	F48	10:1	8	SAEx 30.1
			15,5:1	12,4	SAEx 25.1
			20:1	16	SAEx 25.1
GHT 500.3	50 000	F60	10,25:1	8,2	SAEx 35.1
			15:1	12	SAEx 30.1
			20,5:1	16,4	SAEx 30.1
GHT 800.3	80 000	F60	12:1	9,6	SAEx 35.1
			15:1	12	SAEx 35.1
GHT 1200.3	120 000 F60	F60	10,25:1	8,2	SAEx 40.1
			20,5:1	16,4	SAEx 35.1

НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SQEX CO СТАНИНОЙ/РЫЧАГОМ И SAEX/GF

НЕПОЛНООБОРОТНЫЕ ПРИВОДЫ SQEX СО СТАНИНОЙ И РЫЧАГОМ

Установка рычага и станины на неполнооборотный привод SQEх представляет собой рычажный привод. Технические характеристики рычажного привода идентичны с неполнооборотным приводом, например, максимально допустимое количество переключений. Ниже представлены характеристики рычажного привода с трехфазным электродвигателем переменного тока. Время работы действительно для угла поворота 90°.

Режим «Открыть-Закрыть» SQEx

Тип	Время работы при 50 Гц	Диапазон настроек момента отключения
	[сек]	[Нм]
SQEx 05.2	4 – 32	50 – 150
SQEx 07.2	4 – 32	100 – 300
SQEx 10.2	8 – 63	200 – 600
SQEx 12.2	16 – 63	400 – 1 200
SQEx 14.2	24 - 100	800 – 2 400

Режим регулирования SQREx

Тип	Время работы при 50 Гц	Диапазон настроек момента отключения	Допустимый средний крутящий момент в режиме регулирования
	[сек]	[Нм]	[Нм]
SQREx 05.2	8 – 32	75 – 150	75
SQREx 07.2	8 – 32	150 – 300	150
SQREx 10.2	11 – 63	300 - 600	300
SQREx 12.2	16 – 63	600 – 1 200	600
SQREx 14.2	36 – 100	1 200 – 2 400	1 200

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX С РЫЧАЖНЫМ РЕДУКТОРОМ GF _

Многооборотный привод SAEx с редуктором GF представляет собой рычажный привод.

Рычажные приводы конструктивно отличаются от неполнооборотных редукторов GS. Различные передаточные отношения реализуются с помощью встроенных передаточных механизмов.

В таблице ниже представлены некоторые характеристики. Подробнее смотрите в отдельных справочных таблицах. Редукторы для режимов регулирования включают в себя бронзовое червячное колесо. Номинальный момент для данного исполнения уменьшен.

Тип	Макс. крутящий момент арматуры	Момент регулиро- вания	Общее переда- точное число	Соответствующий многооборотный привод	
	[Нм]	[Нм]		Режим От- крыть-За- крыть	Режим регулиро- вания
GF 50.3	500	125	51:1	SAEx 07.2	SAREx 07.2
GF 63.3	1 000	250	51:1	SAEx 07.6	SAREx 07.6
GF 80.3	2 000	500	53:1	SAEx 10.2	SAREx 10.2
GF 100.3	4 000	1 000	52:1	SAEx 14.2	SAREx 14.2
			126:1	SAEx 10.2	SAREx 10.2
			160:1	SAEx 10.2	SAREx 07.6
			208:1	SAEx 07.6	SAREX 07.6
GF 125.3	8 000	2 000	52:1	SAEx 14.6	SAREx 14.6
			126:1	SAEx 14.2	SAREx 14.2
			160:1	SAEx 14.2	SAREx 10.2
			208:1	SAEx 10.2	SAREx 10.2
GF 160.3	11 250	4000	54:1	SAEx 16.2	SAREx 14.6
			218:1	SAEx 14.2	SAREx 14.2
			442:1	SAEx 10.2	SAREx 10.2
GF 200.3	22 500	8000	53:1	SAEx 25.1	SAREx 25.1
			214:1	SAEx 14.6	SAREx 14.6
			434:1	SAEx 14.2	SAREx 14.2
			864:1	SAEx 10.2	SAREx 10.2
GF 250.3	45 000	16000	52:1	SAEx 30.1	SAREx 30.1
			210:1	SAEx 16.2	SAREx 16.2
			411:1	SAEx 14.6	SAREx 14.6
			848:1	SAEx 14.2	SAREx 14.2

МНОГООБОРОТНЫЕ ПРИВОДЫ SAEX С ПРЯМОХОДНЫМ МОДУЛЕМ LE

Многооборотный привод SAEx с прямоходным модулем LE в одном блоке представляет собой прямоходный привод или прямоходный модуль.

В таблице ниже представлены некоторые характеристики. Подробнее смотрите в отдельных справочных таблицах.

Тип	Диапазон хода	Усилие		Соответствующий многооборотный привод	
	макс. [мм]	макс. [кН]	для момента регулиро- вания [кН]	Режим Открыть- Закрыть	Режим регулиро- вания
LE 12.1	50 100 200 400 500	11,5	6	SAEx 07.2	SAREX 07.2
LE 25.1	50 100 200 400 500	23	12	SAEx 07.6	SAREX 07.6
LE 50.1	63 125 250 400	37,5	20	SAEx 10.2	SAREX 10.2
LE 70.1	63 125 250 400	64	30	SAEx 14.2	SAREX 14.2
LE 100.1	63 125 250 400	128	52	SAEx 14.6	SAREX 14.6
LE 200.1	63 125 250 400	217	87	SAEx 16.2	SAREX 16.2

ВЫСОКИЕ СТАНДАРТЫ КАЧЕСТВА

Надежность приводов относится к важнейшим характеристикам. Именно приводы определяют ход четко скоординированного технологического процесса. Надежность начинается не с ввода в эксплуатацию.

Прежде всего, она подразумевает продуманное проектирование, тщательный подбор материалов и использование самых современных технологий производства с учетом охраны окружающей среды.

Оборудование компании AUMA соответствует всем требованиям сертификатов ISO 9001 и ISO 14001 по безопасности производства.

Однако, поддержание высоких стандартов качества – процесс непрерывный. Многочисленные проверки, проводимые не только потребителями, но и различными независимыми организациями, подтверждают соответствие продукции AUMA высоким стандартам и требованиям.

ДИРЕКТИВЫ ЕС

Декларация производителя о соответствии Директиве по машиностроению и Декларации соответствия нормативам согласно Директивам по низковольтному оборудованию и ЭМС

Согласно нормативам по машиностроению, приводы AUMA и редукторы не являются самостоятельно функционирующей конструкцией. Компания AUMA в Декларации производителя подтверждает, что требования безопасности, которые регламентируются Директивой по машиностроению, полностью учитывались при разработке устройства.

Устройства, описание которых приводится в этой брошюре, размещаются во взрывозащищенном корпусе. Соответствующие сертификаты смотрите на страницах 74 и 75. Кроме того, устройства должны соответствовать другим требованиям, что подтверждается тестами указанных испытательных лабораторий. Например, это относится к проверкам электробезопасности, которые в разных странах отличаются. Соответствующие сертификаты выдаются для всех упомянутых в этой брошюре устройств.

Декларация производителя и Сертификат соответствия нормативам входят в общее Свидетельство.

Устройства компании AUMA маркируются знаком СЕ в соответствии с нормативами взрывозащиты, низковольтного оборудования и ЭМС.

АКТ ВЫХОДНЫХ ИСПЫТАНИЙ

После сборки все приводы проходят полную функциональную проверку, калибруются моментные выключатели. Вся информация вносится в акт выходных испытаний.

СЕРТИФИКАТЫ

Устройства, описание которых приводится в этой брошюре, размещаются во взрывозащищенном корпусе. Соответствующие сертификаты смотрите на страницах 74 и 75. Кроме этого, устройства должны соответствовать другим требованиям, что подтверждается тестами указанных испытательных лабораторий. Например, это относится к проверкам электробезопасности, которые в разных странах отличаются.

Соответствующие сертификаты выдаются для всех упомянутых в этой брошюре устройств.

Получение сертификата

Все свидетельства, протоколы и сертификаты выдаются в печатном или цифровом виде по требованию заказчика.

Документацию можно скачать на вебсайте AUMA. Часть документов находится в открытом доступе, а часть выдается конкретным заказчикам после указания действительного пароля.

> www.auma.com

АЛФАВИТНЫЙ УКАЗАТЕЛЬ

Условия эксплуатации

Степень защиты	16
Защита от коррозии	18
Международные допуски к эксплуатации	8
Сертификаты взрывозащиты	74
Общие положения	
Режим Открыть-Закрыть	20
Режим регулирования	20
Режим работы электродвигателя	20
Частота переключений	20
Вид отключения по положению/по моменту	21
Управление ОТКРЫТЬ-ЗАКРЫТЬ	20
Управление уставкой	21
Встроенный блок управления	
Внешний блок управления	
Электромеханический блок выключателей	
, Концевой выключатель	52, 78
Моментный выключатель	
Выключатель промежуточного положения	•
Сдвоенные выключатели	
Механический указатель положения для индикации положения арматуры	
Электронный датчик положения для дистанционной индикации	
Электронный блок выключателей	
Непрерывный контроль положения	53
Непрерывный контроль крутящего момента	
Непрерывный контроль температуры и вибрации	
Аварийный режим	
Ручной маховик с рукояткой	50
Удлинение ручного маховика	
Лереходник для вспомогательного силового инструмента	
Переходник для вспомогательного силового инструмента Шахтное исполнение	
Зубчатое колесо	
	02
Электрические разъемы	FC 01
Электрический разъем КР	
·	50, 81
Подключение многооборотного привода к арматуре в соответствии с EN ISO 5210	5.4
Втулки В1, В2, В3, В4	
Втулка А	
Специальные типы втулок (АF, АК, АG, изолированные, шестигранный разъем)	54
Подключение неполнооборотного привода к арматуре в соответствии с EN ISO 5211	55 50
Необработанная втулка	
Втулка с отверстием (с двумя фасками, квадратное, с пазом)	
Втулка удлиненная	55
Интерфейсы связи	
Параллельные интерфейсы	
Profibus DP	
Modbus RTU	
Foundation Fieldbus	
Дистанционная настройка параметров и диагностика через шину	
Беспроводная связь	
Оптоволоконный кабель	
Мастер-станция SIMA	42

Панель местного управления. Работа и настройка Пусковая аппаратура Функции режимом работы Зашита и безопасность Защитная труба для выдвижного штока арматуры.......70 Диагностика, инструкции по техобслуживанию, устранение неисправностей Программа настройки и управления AUMA CDT (бесплатно через www.auma.com)

Aumastr. 1 79379 Muellheim, Germany Тел. +49 7631-809-0 Факс +49 7631-809-1250 info@auma.com

ООО «ПРИВОДЫ АУМА» Россия 141400, Московская обл., г.Химки, квартал Клязьма, 1Г тел.: +7 495 221 64 28 факс: +7 495 221 64 38 aumarussia@auma.ru

Дочерние предприятия AUMA и представительства расположены в 70 странах. Контактные данные смотрите на вебсайте компании. www.auma.com

